[1] Karamouz, M., Zeynolabedin, A. and Olyaei, M.A., 2016. Regional Drought Resiliency and Vulnerability. Journal of Hydrologic Engineering, 21(11), p.05016028.
[2] Karamouz, M., & Araghinejad, S., 2005. Advanced hydrology. Industrial University of Amir Kabir (Poly Technics), Tehran, Iran, Publication Centre of Amir Kabir University (In Persian).
[3] McKee, T.B., Doesken, N.J. and Kleist, J., 1993, January. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). Boston, MA: American Meteorological Society.
[4] Karamouz, M., & Araghinejad, S., 2005. Advanced hydrology. Industrial University of Amir Kabir (Poly Technics), Tehran, Iran, Publication Centre of Amir Kabir University (In Persian).
[5] Palmer, W.C., 1965. Meteorological drought (Vol. 30). Washington, DC: US Department of Commerce, Weather Bureau.
[6] Shafer, B.A., 1982. Developemnet of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In Proceedings of the 50th Annual Western Snow
[7] Karamouz, M., Rasouli, K. and Nazif, S., 2009. Development of a hybrid index for drought prediction: case study. Journal of Hydrologic Engineering, 14(6), pp.617-627.
[8] Hayes, M., Svoboda, M., Wall, N. and Widhalm, M., 2011. The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92(4), pp.485-488.
[9] Mu, Q., Zhao, M., Kimball, J.S., McDowell, N.G. and Running, S.W., 2013. A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94(1), pp.83-98.
[10] Gupta, V.K. and Duckstein, L., 1975. A stochastic analysis of extreme droughts. Water Resources Research, 11(2), pp.221-228.
[11] Zelenhasić, E. and Salvai, A., 1987. A method of streamflow drought analysis. Water Resources Research, 23(1), pp.156-168.
[12] Kendall, D.R. and Dracup, J.A., 1992. On the generation of drought events using an alternating renewal-reward model. Stochastic Hydrology and Hydraulics, 6(1), pp.55-68.
[13] Cancelliere, A., Ancarani, A. and Rossi, G., 1998. Susceptibility of water supply reservoirs to drought conditions. Journal of Hydrologic Engineering, 3(2), pp.140-148.
[14] Chung, C.H. and Salas, J.D., 2000. Drought occurrence probabilities and risks of dependent hydrologic processes. Journal of Hydrologic Engineering, 5(3), pp.259-268.
[15] Cancelliere, A. and Salas, J.D., 2004. Drought length properties for periodic‐stochastic hydrologic data. Water resources research, 40(2).
[16] Salas, J.D., Fu, C., Cancelliere, A., Dustin, D., Bode, D., Pineda, A. and Vincent, E., 2005. Characterizing the severity and risk of drought in the Poudre River, Colorado. Journal of Water Resources Planning and Management, 131(5), pp.383-393.
[17] Dalezios, N.R., Loukas, A., Vasiliades, L. and Liakopoulos, E., 2000. Severity-duration-frequency analysis of droughts and wet periods in Greece. Hydrological Sciences Journal, 45(5), pp.751-769.
[18] Wong, G., Lambert, M.F., Leonard, M. and Metcalfe, A.V., 2009. Drought analysis using trivariate copulas conditional on climatic states. Journal of Hydrologic Engineering, 15(2), pp.129-141.
[19] Shiau, J.T. and Modarres, R., 2009. Copula‐based drought severity‐duration‐frequency analysis in Iran. Meteorological Applications, 16(4), pp.481-489.
[20] Hao, Z. and AghaKouchak, A., 2013. Multivariate standardized drought index: a parametric multi-index model. Advances in Water Resources, 57, pp.12-18.
[21] Saghafian, B. and Mehdikhani, H., 2014. Drought characterization using a new copula-based trivariate approach. Natural hazards, 72(3), pp.1391-1407.
[22] Tosunoglu, F. and Kisi, O., 2016. Joint modelling of annual maximum drought severity and corresponding duration. Journal of Hydrology, 543, pp.406-422.
[23] Chavosian, S.A., Nikravrsh, G., dehghanian, N, Nikravrsh, A., 2018. Frequency analysis of drought occurrence based on the development of a two-variable (rainfall-runoff), Sharif Journal, doi: 10.24200/j30.2018.1355 (In Persian)
[24] Omidi, M., Mohammadzadeh, M., & Morid, S. (2010). The probabilistic analysis of drought severity-duration in Tehran province using copula functions.(In Persian)
[25] Karamouz, M., & Araghinejad, S., 2005. Advanced hydrology. Industrial University of Amir Kabir (Poly Technics), Tehran, Iran, Publication Centre of Amir Kabir University (In Persian).
[26] Thornthwaite, C.W. and Mather, J.R., 1957. Instructions and tables for computing potential evapotranspiration and the water balance (No. 551.57 T515i). Drexel Institute of Technology, Centerton, NJ (EUA). Laboratory of Climatology.
[27] Palmer, W.C., 1965. Meteorological drought (Vol. 30). Washington, DC: US Department of Commerce, Weather Bureau.
[28] Palmer, W.C., 1965. Meteorological drought (Vol. 30). Washington, DC: US Department of Commerce, Weather Bureau.
[29] Steinemann, A., 2003. Drought indicators and triggers: a stochastic approach to evaluation. JAWRA Journal of the American Water Resources Association, 39(5), pp.1217-1233.
[30] Garen, D.C., 1993. Revised surface-water supply index for western United States. Journal of Water Resources Planning and Management, 119(4), pp.437-454.
[31] Sabbagh, J.A., Sayigh, A.A.M. and El-Salam, E.M.A., 1977. Estimation of the total solar radiation from meteorological data. Solar Energy, 19(3), pp.307-311.
[32] Reddy, S.J., 1971. An empirical method for the estimation of total solar radiation. Solar energy, 13(2), pp.289-290.
[33] Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.
[34] Asgharizadeh, E., Mohammadi Balani, A., 2017. Multicriteria decision making techniques, University of Tehran publication
[35] Shiau, J.T., 2006. Fitting drought duration and severity with two-dimensional copulas. Water resources management, 20(5), pp.795-815.
[36] Nijssen, D., Schumann, A., Pahlow, M., & Klein, B., 2009. Planning of technical flood retention measures in large river basins under consideration of imprecise probabilities of multivariate hydrological loads. Natural Hazards and Earth System Sciences, 9(4), 1349-1363.
[37] McElroy, F.W., 1967. A necessary and sufficient condition that ordinary least-squares estimators be best linear unbiased. Journal of the American Statistical Association, 62(320), pp.1302-1304.