[1] Rajaratnam, N., Mainali, A., and Hsung, C. Y. (1997). “Observations on flow in vertical dropshafts in urban drainage systems.” J. Environ. Eng., 123(5), 486–491.
[2] Camino, G. A., Zhu, D. Z., and Rajaratnam, N. (2015). “Flow Observations in Tall Plunging Flow Dropshafts.” J. Hydraul. Eng., 141(1).
[3] Jain, S. C. (1987). “Free-surface swirling flows in vertical dropshaft.” J. Hydraul. Eng., 113(10), 1277–1289.
[4] Vischer, D. L., and Hager, W. H. (1995). “Vortex drops.” Energy dissipators: Hydraulic structures design manual, No. 9, Chap. 9, A. A. Balkema, Rotterdam, The Netherlands, 167–181.
[5] Jain, S. C. (1984). “Tangential vortex-inlet.” J. Hydraul. Eng., 110(12), 1693–1699.
[6] Hager, W. H. (1990). “Vortex drop inlet for supercritical approaching flow.” J. Hydraul. Eng., 116(8), 1048–1054.
[7] Quick, M. C. (1990). “Analysis of spiral vortex and vertical slot vortex drop shafts.” J. Hydraul. Eng., 116(3), 309–325.
[8] Jain, S. C., and Ettema, R. (1987). “Vortex-flow intakes.” IAHR Hydraulic Structures Design Manual, Vol. 1, A. A. Balkema, Rotterdam, The Netherlands.
[9] Giudice, G. D., Gisonni, C., & Rasulo, G. (2010). Design of a Scroll Vortex Inlet for Supercritical Approach Flow. Hydraulic Engineering, 136(10), 136:837-841.
[10] Zhao, C. H., Zhu, D. Z., Sun, S. K., and Liu, Z. P. (2006). “Experimental study of flow in a vortex drop shaft.” J. Hydraul. Eng., 132(1), 61– 68.
[11] Zhao, C. H., Sun, S. K., and Liu, Z. P. (2001). “Optimal study on the depth of stilling well for rotation-flow shaft flood-releasing tunnel.” Water Power, 2001(5), 30–33 (in Chinese).
[12] Jeanpierre, D., and Lachal, A. (1966). “Dissipation d’énergie dans un puits a vortex.” Houille Blanche, 21(7), 825–831.
[13] Jain, S. C., and Kennedy, J. F. (1983). “Vortex-flow dropstructures for the Milwaukee Metropolitan Sewerage District inline storage system.” IIHR Rep. No. 264, Univ. of Iowa, Iowa City, Iowa.
[14] Sangsefidi, Y., Mehraein, M., Ghodsian, M., & Motalebizadeh, M. R. (2017). Evaluation and Analysis of Flow over Arced Weirs Using Traditional and Response Surface Methodologies. Hydraulic Engineering, 143(11).
[15] Yu, D., and Lee, J. (2009). “Hydraulics of Tangential Vortex Intake for Urban Drainage.” J. Hydraul. Eng., Vol. 135, pp. 164–174.
[16] Hager, W. H. (2010). WasteWater Hydraulics: Theory and Practice (Second ed.). Springer.
[17] Weller, J. A. (1974). “Similitude in free-surface vortex formations; Discussion of Daggett & Keulegan.” J. Hydraul. Div., 101, HY11.
[18] Daggett, L. L., and Keulegan, G. H. (1974). “Similitude conditions in freesurface vortex
formations.” J. Hydraul. Div., 100(11), 1565–1581.
[19] Jain, A. K., Garde, R. J., and Ranga Raju, K. G. (1978). “Vortex formation at vertical pipe intakes.” J. Hydraul. Div., 104(10), 1429–1445.
[20] Anwar, H. (1965). “Flow in a free vortex.” Water Power, 4, 153–161.
[21] Montgomery, D. C. (2013). “Design and Analysis of Experiments ” 8th edition. Wiley, New York.
[22] Amiri, F., Mousavi, S. M., Yaghmaei, S., and Barati, M. (2012). “Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions.” Biochem. Eng. J., 67, 208–217.
[23] Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., and Mehranian, M. (2005). “Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation.” J. Hazard. Mater., 123(1–3), 187–195.