[1] Vosoughi, M., Fatehifar, E., Derafshi, S., Rostamizadeh, M. 2017. High efficient treatment of the petrochemical phenolic effluent using spent catalyst: Experimental and optimization. Journal of Environmental Chemical Engineering, 5(2), 2024-2031.
[2] Hazrati, H., Jahanbakhshi, N., Rostamizadeh, M. 2018. Fouling reduction in the membrane bioreactor using synthesized zeolite nano-adsorbents. Journal of Membrane Science, 555, 455-462.
[3] Jafarizad, A., Rostamizadeh, M., Zarei, M., Gharibian, S. 2017. Mitoxantrone removal by electrochemical method: A comparison of homogenous and heterogenous catalytic reactions. Environmental Health Engineering and Management Journal, 4(4), 185-193.
[4] Sillanpää, M., Ncibi, M. C., Matilainen, A. 2018. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. Journal of Environmental Management, 208, 56-76.
[5] Oturan, N., Zhou, M., Oturan, M. A. J. T. J. o. P. C. A. 2010. Metomyl degradation by electro-Fenton and electro-Fenton-like processes: a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst. 114(39), 10605-10611.
[6] Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., Rodriguez, J. J. 2011. Highly stable Fe/γ‐Al2O3 catalyst for catalytic wet peroxide oxidation. Journal of Chemical Technology and Biotechnology, 86(4), 497-504.
[7] Rostamizadeh, M., Jafarizad, A., Gharibian, S. 2017. High efficient decolorization of Reactive Red 120 azo dye over reusable Fe-ZSM-5 nanocatalyst in Electro-Fenton reaction. Separation and Purification Technology, 192, 340-347.
[8] Zhou, L., Ma, J., Zhang, H., Shao, Y., Li, Y. 2015. Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue. Applied Surface Science, 324, 490-498.
[9] Shen, J., Li, Y., Zhu, Y., Hu, Y., Li, C. 2016. Aerosol synthesis of Graphene-Fe 3 O 4 hollow hybrid microspheres for heterogeneous Fenton and electro-Fenton reaction. Journal of Environmental Chemical Engineering, 4(2), 2469-2476.
[10] Rostamizadeh, M., Taeb, A. 2016. Synthesis and characterization of HZSM-5 catalyst for methanol to propylene (MTP) reaction. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46(5), 665-671.
[11] Rostamizadeh, M., Yaripour, F., Hazrati, H. 2018. High efficient mesoporous HZSM-5 nanocatalyst development through desilication with mixed alkaline solution for methanol to olefin reaction. Journal of Porous Materials, 25(5), 1287-1299.
[12] Rostamizadeh, M., Yaripour, F., Hazrati, H. 2018. Ni-doped high silica HZSM-5 zeolite (Si/Al = 200) nanocatalyst for the selective production of olefins from methanol. Journal of Analytical and Applied Pyrolysis, 132, 1-10.
[13] Mahboub, M. J. D., Ahmadpour, A., Rashidi, H. 2012. Improving methane storage on wet activated carbons at various amounts of water. Journal of Fuel Chemistry and Technology, 40(4), 385-389.
[14] Mahboub, M. J. D., Rostamizadeh, M., Dubois, J.-l., Patience, G. S. 2016. Partial oxidation of 2-methyl-1, 3-propanediol to methacrylic acid: experimental and neural network modeling. RSC Advances, 6(115), 114123-114134.
[15] Rostamizadeh, M., Yaripour, F., Hazrati, H. 2018. High efficient mesoporous HZSM-5 nanocatalyst development through desilication with mixed alkaline solution for methanol to olefin reaction. Journal of Porous Materials, 25(5), 1287-1299.
[16] Cabral de Menezes, S. M., Lam, Y. L., Damodaran, K., Pruski, M. 2006. Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties. Microporous and Mesoporous Materials, 95(1–3), 286-295.
[17] Rostamizadeh, M., Yaripour, F. 2017. Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion. Journal of the Taiwan Institute of Chemical Engineers, 71, 454-463.
[18] Campbell, S. M., Jiang, X.-Z., Howe, R. F. 1999. Methanol to hydrocarbons: spectroscopic studies and the significance of extra-framework aluminium. Microporous and Mesoporous Materials, 29(1–2), 91-108.
[19] Sun, Y., Yan, H., Liu, D., Zhao, D. 2008. A comparative study on the dehydration of monoethanolamine over cesium phosphate modified zeolite catalysts. Catalysis Communications, 9(5), 924-930.
[20] Kim, J. R., Santiano, B., Kim, H., Kan, E. 2013. Heterogeneous oxidation of methylene blue with surface-modified iron-amended activated carbon. American Journal of Analytical Chemistry, 4(07), 115.
[21] Neamtu, M., Catrinescu, C., Kettrup, A. 2004. Effect of dealumination of iron (III)—exchanged Y zeolites on oxidation of Reactive Yellow 84 azo dye in the presence of hydrogen peroxide. Applied Catalysis B: Environmental, 51(3), 149-157.
[22] Bassyouni, D., Hamad, H., El-Ashtoukhy, E. Z., Amin, N., El-Latif, M. A. 2017. Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium. Journal of Hazardous materials, 335, 178-187.
[23] Nidheesh, P., Olvera-Vargas, H., Oturan, N., Oturan, M. 2017. Heterogeneous Electro-Fenton Process: Principles and Applications.
[24] El-Desoky, H. S., Ghoneim, M. M., El-Sheikh, R., Zidan, N. M. 2010. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent. Journal of Hazardous materials, 175(1), 858-865.
[25] Neyens, E., Baeyens, J. 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous materials, 98(1), 33-50.
[26] Zazou, H., Oturan, N., Zhang, H., Hamdani, M., Oturan, M. A. 2017. Comparative study of electrochemical oxidation of herbicide 2, 4, 5-T: kinetics, parametric optimization and mineralization pathway. Sustainable Environment Research, 27(1), 15-23.
[27] Hou, B., Han, H., Jia, S., Zhuang, H., Xu, P., Wang, D. 2015. Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe 3 O 4: kinetics with the Fermi's equation. Journal of the Taiwan Institute of Chemical Engineers, 56, 138-147.
[28] Yaman, C., Gündüz, G. 2015. A parametric study on the decolorization and mineralization of CI Reactive Red 141 in water by heterogeneous Fenton-like oxidation over FeZSM-5 zeolite. Journal of Environmental Health Science and Engineering, 13(1), 7.
[29] Attia, T. M. S., Hu, X. L., Yin, D. Q. 2013. Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere, 93(9), 2076-2085.
[30] Sun, S.-P., Zeng, X., Li, C., Lemley, A. T. 2014. Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe 3 O 4/H 2 O 2 with nitrilotriacetic acid. Chemical Engineering Journal, 244, 44-49.
[31] Qiang, Z., Chang, J.-H., Huang, C.-P. 2003. Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Research, 37(6), 1308-1319.
[32] Shen, C., Ma, J., Liu, W., Wen, Y., Rashid, S. 2016. Selective conversion of organic pollutant p-chlorophenol to formic acid using zeolite Fenton catalyst. Chemosphere, 161, 446-453.
[33] Babuponnusami, A., Muthukumar, K. 2012. Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chemical Engineering Journal, 183, 1-9.