[1]. Okamora, H., Ouchi, M., “ Self-Compacting Concrete”, Journal of Advanced Concrete Technology, (2003), Vol 1, No 1, 5-15.
[2]. Ramezanianpour, A. A., Samadian, M., & Mahdikhani, M. (2012). Engineering properties and durability of self-consolidating concretes (scc) containing volcanic pumice ash. Asian journal of civil engineering (building and housing), 13(4), 521-530.
[3]. The european guidelines for self-compacting concrete; specification production and use. EFNARC; May 2005.
[4]. Zerbino, R., Giaccio, G., Isaia, G.C., “Concrete incorporating rice-husk ash without processing”, Construction and Building Materials, 25 (2011), 371-378.
[5]. Chen, Li. "A multiple linear regression prediction of concrete compressive strength based on physical properties of electric arc furnace oxidizing slag." International Journal of Applied Science and Engineering 7.2 (2010): 153-158.
[6]. Sonebi, M., Grünewald, S., Cevik, A., & Walraven, J. (2016). Modelling fresh properties of self-compacting concrete using neural network technique. Comp Concr, 4, 903-921.
[7]. Šipoš, T. K., Miličević, I., & Siddique, R. (2017). Model for mix design of brick aggregate concrete based on neural network modelling. Construction and Building Materials, 148, 757-769.
[8]. Wang, B., Man, T., & Jin, H. (2015). Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems. Construction and Building Materials, 84, 184-191.
[9]. Mousavi, S. M., Aminian, P., Gandomi, A. H., Alavi, A. H., & Bolandi, H. (2012). A new predictive model for compressive strength of HPC using gene expression programming. Advances in Engineering Software, 45(1), 105-114.
[10]. Gholampour, A., Gandomi, A. H., & Ozbakkaloglu, T. (2017). New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Construction and Building Materials, 130, 122-145.
[11]. Chithra S, Kumar SRRS, Chinnaraju K, Ashmita FA. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. 2016;114:528–35.
[12]. Ahmadi-nedushan B. Prediction of elastic modulus of normal and high strength concrete using ANFIS and optimal nonlinear regression models. Constr Build Mater. 2012;36:665–73.A,
[13]. Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Constr Build Mater. 2010;24(5):709–18.
[14]. Ji T, Lin T, Lin X. A concrete mix proportion design algorithm based on artificial neural networks. Cem Concr Res 2006;36(7):1399–408.
[15]. Majumdar A, Mitra A, Banerjee D, Majumdar P. K, Soft Computing Applications in Fabrics and Clothing; A Comprehensive Review, Research Journal of Textile and Apparel, 2010, 14, 1-17.
[16]. Holland J. H, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975
[17]. Bateni S.M, Jeng D.S, Neural network and neuro-fuzzy assessments for scour depth around bridge piers, Engineering applications of artificial intelligence, 2007b, 20, 401-414
[18]. Ferreira C, Gene Expression Programming; A New Adaptive Algorithm for Solving Problems, Complex Systems, 2001, 13, 87-129.
[19]. Ferreria C, Gene-expression Programming: Mathematical Modeling by an Artificial Intelligence, Springer, Berlin, Heidelberg, New York, 2006.
[20]. GeneXproTools version 5.0 [Computer software]. Gepsoft Limited, Bristol, U.K
[21]. Sakr, K. (2006). Effects of silica fume and rice husk ash on the properties of heavy weight concrete. Journal of materials in civil engineering, 18(3), 367-376.
[22]. Ganesan, K., Rajagopal, K., & Thangavel, K. (2008). Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Construction and building materials, 22(8), 1675-1683.
[23]. Bui, D. D., Hu, J., & Stroeven, P. (2005). Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cement and concrete composites, 27(3), 357-366.
[24]. Ramezanianpour, A. A., Mahdikhani, M., & Ahmadibeni, G. (2009). The effect of rice husk ash on mechanical properties and durability of sustainable concretes.
[25]. Frank, I. E., & Todeschini, R. (1994). The data analysis handbook (Vol. 14). Elsevier.
[26]. Golbraikh, A., & Tropsha, A. (2002). Beware of q2!. Journal of molecular graphics and modelling, 20(4), 269-276.
[27]. Zhang, W. G., & Goh, A. T. C. (2013). Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Computers and Geotechnics, 48, 82-95.
[28]. Bluman, A.G. (2009). “Elementary statistics: a step by step approach.” 7th ed. McGram-Hill, New York, USA.
[29]. Najafzadeh, M., Balf, M. R., & Rashedi, E. (2016). Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. Journal of Hydroinformatics, 18(5), 867-884.