تحلیل عوامل ترافیکی مؤثر بر وقوع تصادفات در نواحی ورودی تونل‌های شهری (مطالعه موردی: تونل رسالت)

نویسندگان
1 عضو هیات علمی دانشگاه خوارزمی
2 گروه عمران،دانشکده فنی و مهندسی، دانشگاه خوارزمی، البرز، ایران
چکیده
. هدف از این تحقیق، استفاده از مدل جمعی تعمیم‌یافته (GAM) به‌عنوان رویکردی ناپارامتری جهت شناسایی عوامل ترافیکی مؤثر بر فراوانی تصادفات در نواحی دسترسی و ورودی تونل‌های شهری و مقایسه‌ی نتایج حاصل از آن با مدل خطی تعمیم‌یافته (GLM) به‌عنوان رویکردی پارامتری است. برای این منظور اطلاعات تصادفات رخ‌داده در محدوده‌ی تونل رسالت به همراه داده‌های ترافیکی روزانه در طول سه سال متوالی (1389 تا 1391) از مرکز کنترل و مدیریت تونل‌های شهری تهران دریافت شد. پس از پردازش اطلاعات، تعداد 1047 تصادف در نواحی دسترسی و ورودی تونل به‌عنوان متغیر وابسته و سه متغیر لگاریتم حجم ترافیک، فراوانی وسایل‌نقلیه سنگین (درصد) و اختلاف سرعت از محدودیت سرعت بزرگراه به‌عنوان متغیرهای مستقل نهایی جهت فرآیند مدل‌سازی انتخاب شدند. بر اساس نتایج مدل خطی تعمیم‌یافته، اثر خطی متغیرهای لگاریتم حجم روزانه (009/0 p<)، فراوانی وسایل‌نقلیه سنگین (000/0 p<) و اختلاف میانگین سرعت روزانه وسایل‌نقلیه عبوری از تونل نسبت به محدودیت سرعت بزرگراه (000/0 p<) در فراوانی تصادفات نواحی دسترسی و ورودی تونل معنی‌دار گزارش شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analysis of Traffic Factors Affecting the Accidents in the Urban Tunnel Entry Areas (Case Study: Resalat Tunnel)

نویسندگان English

B. shirgir 1
hossein hassanpour 2
2 Department of Civil Engineering, kharazmi University, Alborz, Iran
چکیده English

Urban tunnels are one of the major infrastructures in transportation networks of metropolitan cities. Owing to the enclosed space of tunnels, the safety of through passage is essential. Identify factors affecting the frequency of accidents in urban tunnels can be useful in preventing and reducing related casualties. In this research, we try to determine the factors affecting a number of accidents by comparing the generalized linear model and the generalized additive model. The data of Resalat tunnel comes from Tehran's urban tunnels control and management centre, which includes the daily volume variables, the percentage of heavy vehicles, the difference between the average speed of passing vehicles from the tunnel and the speed limit of the highway as independent variables, and the number of accidents per day during the period 2010 to 2012 as dependent variable. In this research, R software programs are used respectively for fitting a generalized linear and generalized additive model. Based on the results of generalized linear and generalized additive models, the percentage of heavy vehicles and the difference between the average speed of passing vehicles from the tunnel and the speed limit of the highway are significantly and positively related to the frequency of accidents in the access and entrance areas of the tunnel. The logarithm of daily traffic volume is not meaningful in the generalized additive model, in contrast to the generalized linear model. Therefore, identifying the factors affecting the frequency of accidents in urban tunnels by using advanced statistical models will greatly help to develop effective measures in improving the safety of tunnels. Urban tunnels are one of the major infrastructures in transportation networks of metropolitan cities. Owing to the enclosed space of tunnels, the safety of through passage is essential. Identify factors affecting the frequency of accidents in urban tunnels can be useful in preventing and reducing related casualties. In this research, we try to determine the factors affecting a number of accidents by comparing the generalized linear model and the generalized additive model. The data of Resalat tunnel comes from Tehran's urban tunnels control and management centre, which includes the daily volume variables, the percentage of heavy vehicles, the difference between the average speed of passing vehicles from the tunnel and the speed limit of the highway as independent variables, and the number of accidents per day during the period 2010 to 2012 as dependent variable. In this research, R software programs are used respectively for fitting a generalized linear and generalized additive model. Based on the results of generalized linear and generalized additive models, the percentage of heavy vehicles and the difference between the average speed of passing vehicles from the tunnel and the speed limit of the highway are significantly and positively related to the frequency of accidents in the access and entrance areas of the tunnel. The logarithm of daily traffic volume is not meaningful in the generalized additive model, in contrast to the generalized linear model. Therefore, identifying the factors affecting the frequency of accidents in urban tunnels by using advanced statistical models will greatly help to develop effective measures in improving the safety of tunnels.

کلیدواژه‌ها English

Urban Tunnels
Accident Frequency
Generalized Linear Model
Generalized Additive Model