بررسی آبشستگی موضعی پایه پل در خاک چسبنده

نویسندگان
1 دانشیاردانشگاه شیراز
2 دانشگاه شیراز
چکیده
از دلایل اصلی تخریب پل‌ها آبشستگی موضعی اطراف پایه‌ می‌باشد که با گذشت زمان و عدم کنترل آن پایداری سازه را به مخاطره می‌اندازد. تاکنون محققین بسیاری آبشستگی موضعی اطراف پایه‌های پل را موردبررسی قرار داده‌اند و روش‌های مناسبی در جهت کنترل و کاهش آبشستگی ارائه داده‌اند که شامل روش‌های اصلاح الگوی جریان در این نواحی و همچنین روش‌های مقاوم‌سازی بستر می‌باشد. در این پژوهش به بررسی آبشستگی موضعی پایه پل در خاک‌های چسبنده پرداخته‌شده است و استفاده از خاک چسبنده رسی از نوع رس بنتونیت به‌صورت اختلاط با خاک بستر، به‌عنوان راهکاری در جهت مقاوم‌سازی بستر در برابر تنش‌های واردشده و کنترل آبشستگی مورد بررسی قرارگرفته است. اهداف دنبال شده در این پژوهش شامل تعیین بهترین شرایط تراکمی (میزان رطوبت و درجه تراکم)، میزان بهینه رس مورد استفاده و همچنین تأثیر مقاومت برشی بستر در میزان آبشستگی می‌باشد. نتایج نشان داد که استفاده از 10 درصد رس بنتونیت به‌صورت اختلاط با خاک ماسه‌ای بستر در درجه تراکم 90 درصد و رطوبت بهینه تراکم، باعث کاهش آبشستگی به میزان 100 درصد نسبت به نمونه شاهد می‌شود. همچنین نتایج نشان داد که رس بنتونیت تأثیر بیشتری در کاهش آبشستگی نسبت به رس کائولین دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Assessment of Local Scour at Bridge Piers in Cohesive Soils

چکیده English

The main reasons of bridge failure are local scour around the piers. In fact, they will be appeared as a scour hole in the river bed. Moreover, lack of control during the time, local scouring will threaten stability of structure. Therefore, determining of depth and dimension of the scour hole, also finding effective factors on scouring are important. Lots of researchers have studied the local scour around the bridge piers. Actually, they have proposed lots of appropriate techniques to control and to reduce scour around piers and bridge abutments. These proposed approaches are divided into two methods which are altering the flow and bed-armoring. In this research, the local scour around the bridge piers in a cohesive soils have studied. Particularly, the cohesive soils in form of mixture of Bentonite (montmorillonitic clay from 0 to 15%) and bed sediment (fine sand) used. In fact, this approach is a solution to challenge bed-armoring against existence shear stress. As a result, the proposed method will be used for controlling the scour. The experiments were carried out at the hydraulic laboratory of the Water Engineering Department, at Shiraz University, Iran. The laboratory flume was a rectangular cross section with 18 m length, 1.2 m wide and 0.4 m deep. According to channel geometry, the discharge and the depth of flow were determined to be 0.034 m^3⁄( s ) and 13 cm, respectively. In all experiments, the discharge and flow depth were constant. This study focused on the best compaction conditions, optimum clay content and the bed shear strength. The undrained shear strength of the soil was measured using an in situ miniature van shear apparatus. The best compaction conditions including optimum moisture and compaction energy. From standard Proctor test, the optimum initial water content Wopt and the optimum dry density ρdopt was determined. The compaction was expressed as the ratio of dry density ρd to maximum dry density ρdopt of the mixture. Therefore three relative compaction equal to70%, 80% and 90% used. Also, three water content optimum initial water content, optimum initial water content – 3% and optimum initial water content + 3% are used. The results indicate that for smaller clay content (5%) the shape of the scour hole was similar to that in sand sediment and is regular and symmetrical. For clay content equal to10%, scour hole is geometrically much irregular compared to that observed in sand bed and it is observed that a steeper slope of the scour hole in sediment mixture. The slope became steeper whit an increase in relative compaction. In fact, the higher relative compaction and the higher clay content increases shear strength and decreases the maximum scour depth. The samples compacted at optimum water content creates a structure with the most resistant to scour. The erodibility of samples compacted dry of optimum water content is less than samples compacted on the wet side of optimum. The results showed that under conditions which the amount of Bentonite equals at least 10% of dry weight in the mixture (Bentonite and sand sediment), relative compaction equal s to 90% and and water content equals to optimum moisture, simultaneously the local scour reduces by 100% in single pier. In addition, the influence of the compaction and type of clay mineral was investigated. The results show that Bentonite was more effective than Kaolin. If the 15% of dry weight Kaolin clay mixed with bed sand sediment to be used and relative compaction equal to 90% and water ontent equals to optimum moisture, simultaneously, the maximum scour hole was reduced only by 34%.

کلیدواژه‌ها English

Local Scour
Bridge pier
Incohesive soils
Bentonite
Kaolin
1[ Ansari S.A., Kothyari U.C. & Ranga Raju K.G. 2002 Influence of cohesion on scour around bridge piers. Journal of Hydraulic Research, 40(6), 717–729.
]2[ Briaud J.L., Ting F.C.K., Chen H.C., Gudavalli R., Perugu S. & Wei G. 1999 SRICOS: prediction of scour rate in cohesive soils at bridge piers. Journal of Geotechnical and Geoenvironmental Engineering, 125 (4), 237–246.
]3[ Debnath K. & Chauduri s. 2010 Laboratory experiments on local scour around cylinder for clay and clay–sand mixed beds. Engineering Geology, 111(1-4), 51–61.
]4[ Ting F.C.K., Briaud J.L., Chen H.C., Gudavalli R., Perugu S. & Wei G. 2001 Flume tests for scour in clay at circular piers. Journal of Hydraulic Engineering, 127 (11), 969–978.
]5[ Rambabu M., Narasimha. Rao S. & Sundar V. 2002 A simplified instrumentation for measuring scour in silty clay around a vertical pile. Journal of Applied Ocean Research, 24(6), 355-360.
]6[ Khassaf S.I. 2007 Effect of cohesive and noncohesive soils on equilibrium scour depth. Tikrit Journal of Engineering Science, 14(2), 73-85.
]7[ Najafzadeh M. 2009 Experimental and numerical study of local scour around a vertical pier in cohesive soils. MS Thesis, Shahid Bahonar University, Kerman, Iran. (In Persian)
]8[ Link O., Klischies K., Montalva G. & Dey S. 2013 Effects of Bed Compaction on Scour at Piers in Sand-Clay Mixtures. Journal of Hydraulic Engineering, 139(9), 1013-1019.
]9[ Molinas A., Jones S. & Hosny M. 1999 Effects of cohesive material properties on local scour around piers. Journal of the Transportation Research Board, 1690, 164-174.
]10 [Najafzadeh M., Barani Gh.A. & Kermani M.R. 2013 GMDH based back propagation algorithm to predict abutment scour in cohesive soils. Journal of Ocean Engineering, 59, 100-106.
]11[ Wan C. & R Fell. 2004 Investigation of Rate of erosion of soils in embankment dams. Journal of Geotec ring, 30(4).
]12[ Raudkivi A.J. & Ettema R. 1983 Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3), 338–350.
[13] Shafaei - Bejestan M. 2011 Hydraulic of sediment transport (2th ed). Shahid Chamran University Press, Ahvaz, Iran. (In Persian)
]14[ Chiew Y.M. & Mellville B.W. 1987 Local scour around bridge piers. Journal of Hydraulic Research, 25(1), 15-26.
]15[ Raudkivi A.J. 1998 Loose Boundary Hydraulics. A. A. Balkema. Rotterdam, The Netherland.
]16[ Partheniades E. 2007 Engineering Properties and Hydraulic Behavior of Cohesive Sediments. CRC Press, Taylor and Francis Group, p.338.
]17[ Abou-seida M.M., Elsaeed G.H., Mostafa T.M. & Elzahry E.F.M. 2012 Local scour at bridge abutments in cohesive soil. Journal of Hydraulic Research, iFirst, 50(2), 171-180.
]18[ Kumar V., Rang Raju K.G. & Vittal N. 1999 Redaction of local scour around bridge pier using slots and collar. Journal of hydraulic engineering, ASCE 125(2), 132-135.
]19[ Briaud J.L., Ting F.C.K., Chen H.C., Gudavalli R., Perugu S. & Wei G. 1999 SRICOS: prediction of scour rate in cohesive soils at bridge piers. Journal of Geotechnical and Geoenvironmental Engineering, 125 (4), 237–246.
]20[ Rambabu M., Narasimha. Rao S. & Sundar V. 2003 Current- induced Scour around a Vertical pile in cohesive soil. Journal of Ocean Engineering, 30(7), 893-920