[1] Timoshenko S.P. & Gere J.M. 1961 Theory of Elastic Stability. McGraw Hill, New York.
[2] Chen WF & Lui EM. 1987 Structural stability, theory and implementation. New York, Elsevier.
[3] Bazant ZP & Cedolin L. 1991 Stability of structures. Elastic, Inelastic, Fracture and Damage Theories. New York, Dover Publications.
[4] Frisch-Fay R. 1962 On the stability of a strut under uniformly distributed axial forces. International Journal of Solids and Structures, 2(3), 361–369.
[5] Arbabi F. & Li F. 1991 Buckling of variable cross-section columns: integral equation approach. Journal of Structural Engineering, 117 (8), 2426–2441.
[6] Siginer A. 1992 Buckling of columns of variable flexural rigidity. Journal of Engineering Mechanics, 118 (3): 543–640.
[7] Raftoyiannis I. & Ermopoulos J. 2005 Stability of tapered and stepped steel columns with initial imperfections. Engineering Structures, 27, 1248–1257.
[8] Saffari H., Rahgozar R. & Jahanshahi R. 2008 An efficient method for computation of effective length factor of columns in a steel gabled frame with tapered members. Journal of Constructional Steel Research, 64, 400–406.
[9] Rahai, A. R. & Kazemi S. 2008 Buckling analysis of non-prismatic column based on modified vibration method. Communications in Nonlinear Science and Numerical Simulation, 13, 1721–1735.
[10] Coşkun S. B. & Atay M. T. 2009 Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method. Computers and Mathematic with Applications, 58(11–12), 2260–2266.
[11] Okay F., Atay M. T. & Coçkun S. B. 2010 Determination of buckling loads and mode shapes of a heavy vertical column under its own weight using the variational iteration method. International Journal of Nonlinear Sciences and Numerical Simulation, 11(10), 851–857.
[12] Eisenberger M. & Clastornik J. 1987 Beams on variable two-parameter elastic foundation. Journal of Engineering Mechanics, 113(10), 1454-1466.
[13] Kim N-II, Fu C. C. & Kim M-Y. 2007 Stiffness matrices for flexural–torsional/lateral buckling and vibration analysis of thin-walled beam. Journal of Sound and Vibration, 299, 739–756.
[14] Al-Sadder S. Z. 2004 Exact expression for stability functions of a general non-prismatic beam-column member. Journal of Constructional Steel Research, 60, 1561–1584.
[15] Asgarian B., Soltani M. & Mohri F. 2013 Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections. Thin-Walled Structures, 62, 96–108.
[16] Soltani M., Asgarian B. & Mohri F. 2014 Finite element method for stability and free vibration analyses of non-prismatic thin-walled beams. Thin-Walled Structures, 82, 245-261.
[17] Tong X. & Tabarrok B. 1995 Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section. Journal of Sound and Vibration, 186, 821–35.
[18] Elishakoff I. & Guede Z. 2004 Analytical polynomial solutions for vibrating axially graded beams. Mechanics of Advanced Materials and Structures, 11(6), 517-533.
[19] Alshorbagy A.E., Eltaher M.A. & Mahmoud F.F. 2011 Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1), 412-425.
[20] Rajasekaran S. 2013 Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Applied Mathematical Modelling, 37, 4440-4463.
[21] Singh K.V. & Li G. 2009 Buckling of functionally graded and elastically restrained non-uniform columns. Composites Part B, 40(5), 393-403.
[22] Shahba A. & Rajasekaran S. 2012 Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials. Applied Mathematical Modelling, 36(7), 3094-3111.
[23] Shahba A., Attarnejad R. & Hajilar S. 2013 A mechanical-based solution for axially functionally graded tapered Euler-Bernoulli beams. Mechanics of Advanced Materials and Structures, 20, 696-707.
[24] Nakamura T., Wang T. & Sampath S. 2000 Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater, 48, 4293–306.
[25] Zakeri M., Modarakar Haghighi A. & Attarnejad R. 2016 On the Analysis of FGM Beams: FEM with Innovative Element. Journal of Solid Mechanics, 8(2), 348-364.
[26] Wang C. M., Wang C.Y. & Reddy J.N. 2005 Exact Solutions for Buckling of Structural Members. CRC Press LLC, Florida.
[27] MATLAB Version7.6.MathWorks Inc, USA, 2008.
[28] ANSYS, Version 5.4, Swanson Analysis System, Inc, 2007.