مودهای شکست ترک سکه‌ای موجود در لایه محدود ایزوتروپ جانبی

نویسندگان
دانشگاه تهران
چکیده
وجود ترک در محیط­های مختلف امری دور از انتظار نیست، از سویی دیگر توسعه روز افزون مواد کامپوزیتی توجه به اندرکنش ترک با محیط­های ناهمسانگرد را دوچندان کرده است. همچنین ایجاد و گسترش ترک در جامدات یکی از عوامل مهمی است که برای جلوگیری از آثار مخرب ترک روی محیط باید مورد بررسی قرار گیرد. با توجه به این موضوع که ترک ممکن است در معرض مودهای مختلف شکست قرار بگیرد، بررسی ترک تحت شرایط مرزی مختلف، کمک شایانی به پیش­بینی رفتار محیط دارای ترک می­کند. در این پژوهش به صورت تحلیلی مودهای مختلف شکست (بازشدگی، برشی و پارگی) ترک سکه­ای واقع در لایه ایزوتروپ جانبی بررسی شده است. در هر مود با نوشتن شرایط مرزی حاکم بر مساله و جایگذاری آن‌ها در معادلات حاکم بر محیط و تغییر متغیرهای مناسب، شرایط مرزی به معادلات انتگرالی دوگانه تبدیل می­شود. در نهایت با حل معادلات انتگرالی دوگانه، مسائل مورد بررسی هر کدام به یک معادله فردهلم نوع دوم که تابعی از شعاع ترک، ضخامت لایه و خواص محیط است، منتهی می‌شوند که به علت پیچیدگی، این معادلات دارای جواب تحلیلی نیست. در نتیجه با به کارگیری روش عددی مناسب معادلات حل شده و ضریب شدت تنش نوک ترک سکه­ای برای مودهای مختلف حاصل می­شود، نتایج شدت تنش برای مصالح مختلف ایزوتروپ جانبی بر حسب نسبت ضخامت لایه به شعاع ترک سکه­ای به دست آمدند. نتایج نشاندهنده آن هستند که ناهمسانی محیط تاثیر قابل توجهی روی ضرایب شدت تنش می­گذارد و اینکه همواره با افزایش ضخامت لایه به شعاع ترک ضریب شدت تنش در مودهای مختلف افزایش و این مقدار در ضخامت­های زیاد مستقل از نوع مصالح محیط به ضریب شدت تنش محیط بینهایت میل پیدا می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fracture modes of a penny-shaped crack in a layer of transversely isotropic solid

چکیده English

Nowadays fracture behavior composites play an important role in geomechanics engineering. Also, it is common knowledge that all existing structural materials contain different inter- and intra-component defect (cracks, delaminations, etc.). On the other hand, analytical techniques can provide a better physical interpretation of problems. In this paper, by using an analytical approach, effects of the fracture modes (opening, shearing and tearing) on a penny-shaped crack in a layer of transversely isotropic solid has been studied. The layer surfaces are fixed from displacement and the system is loaded symmetrically in each mode. In each mode, by substituting the boundary conditions into the governing equations of the medium, the problem reduced to dual integral equations. With the aid some mathematical methods, the dual integral equations are converted to a Fredholm integral equation which is amenable to numerical solution. These Fredholm integral equations are the functions of the thickness of the layer, the radius of crack and the properties of the layer. To evaluate the effect of anisotropic materials on the stress intensity factors(SIFs), several synthetic types of isotropic and transversely isotropic materials are selected. By employing a numerical method the opening, shearing and tearing SIFs for different ratios of layer thickness are obtained. The results for the opening SIF show that by increasing the the SIF decreases substasinaly. On the other hand, an increase in leads to increments in opening SIF. Also, the results demonstrate that the variation in has a negligible effect on the opening SIF. Moreover, an increasing in leads reductions in SIF. For the shearing SIF, has little effect on the results although by decreasing the the shearing SIF increases. Unlike the , the modulus of the young in the plane ( ) of the isotropy has substantial effect on the shearing SIF. An increase in leads increments in the shearing SIF. Also, by increasing the the SIF increases marginally. In the mode III, the tearing SIF is only the functions of (the shear modulus for the plane normal to the plane of isotropy) and . The results show that by reduction in the tearing SIF increases and by increasing the tearing SIF increases. An important point that can be inferred from the results is that by increasing the ratio of layer thickness to the radius of the penny-shaped crack all of the three SIFs increase, this increase for the lower thicknesses is much more in comparison to the greater thicknesses. Additionally, when the layer thickness gets higher, the stress intensity factors for all the materials tend to a constant coefficient. This means that when the layer thickness gets greater and tends to infinity, the SIFs become independent of the material of the layer

کلیدواژه‌ها English

Penny-shapped crack
Transversely isotropic
Fredholm equation
Stress intensity Factor (SIF)
[1] Sack, R. A. 1946 Extension of Griffith's theory of rupture to three dimensions. Proceedings of the Physical Society, 58(6), 729.
[2] Sneddon, I. 1946 The distribution of stress in the neighbourhood of a crack in an elastic solid. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,187, 229-260.
[3] Lowengrub, M. 1961 Stress in the vicinity of a crack in a thick elastic plate. Quarterly of Applied Mathematics, 19(2), 119-126.
[4] Collins, W. D. 1962 Some axially symmetric stress distributions in elastic solids containing penny-shaped cracks. I. Cracks in an infinite solid and a thick plate. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 266.
[5] Kassir, M. K., & Sih, G. C. 1975 Three-dimensional crack problems: A new selection of crack solutions in three-dimensional elasticity(Book). Leiden, Noordhoff International Publishing(Mechanics of Fracture., 2.

[6] Dhawan, G. K. 1973 The distribution of stress in the vicinity of an external crack in an infinite elastic thick plate. Acta Mechanica, 16(3), 255-270.
[7] Selvadurai, A. P. S., & Singh, B. M. 1985 The annular crack problem for an isotropic elastic solid. The Quarterly Journal of Mechanics and Applied Mathematics, 38(2), 233-243.
[8] Danyluk, H. T., & Singh, B. M. 1986 Problem of an infinite solid containing a flat annular crack under torsion. Engineering fracture mechanics, 24(1), 33-38.
[9] Fabrikant, V. I. 1991 Internal circular crack under normal antisymmetric loading. Archive of applied mechanics, 61(1), 2-17.
[10] Eskandari, M., Moeini-Ardakani, S. S., & Shodja, H. M. 2010 An energetically consistent annular crack in a piezoelectric medium. Engineering Fracture Mechanics, 77(5), 819-831.
[11] Eskandari-Ghadi, M., Ardeshir-Behrestaghi, A., & Neya, B. N. 2013 Mathematical analysis for an axissymmetric disc-shaped crack in transversely isotropic half-space. International Journal of Mechanical Sciences, 68, 171-179.
[12] Fabrikant, V. I. 2016 General flat crack arbitrarily located in the transversely-isotropic body. Theoretical and Applied Fracture Mechanics, 82, 69-76.
[13] Lekhnitskii, S. G. 1963 Of an anisotropic elastic body. Vol. 525. San Francisco: Holden-Day.
[14] Rahimian, M., Eskandari-Ghadi, M., Pak, R. Y., & Khojasteh, A. 2007 Elastodynamic potential method for transversely isotropic solid. Journal of Engineering Mechanics, 133(10), 1134-1145.
[15] Noble, B. 1963 The solution of Bessel function dual integral equations by a multiplying-factor method. In Mathematical Proceedings of the Cambridge Philosophical Society, 59, 351-362.
[16] Payton, R. C. 2012 Elastic wave propagation in transversely isotropic media. Vol. 4. Springer Science & Business Media.