1. Chu, J., Ivanov, V., He, J., Maeimi, M. & Wu, S. in Ground Improvement Case Histories: Chemical, Electrokinetic, Thermal and Bioengineering Methods 571–589 (2015).
2. Cheng, L. & Cord-Ruwisch, R. In situ soil cementation with ureolytic bacteria by surface percolation. Ecol. Eng. 42, 64–72 (2012).
3. Kim, D., Park, K. & Kim, D. Effects of ground conditions on microbial cementation in soils. Materials (Basel). 7, 143–156 (2013).
4. Cuthbert, M. O. et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation. Ecol. Eng. 41, 32–40 (2012).
5. Ng, W., Lee, M. & Hii, S. An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Acad. Sci. Eng. Technol. 62, 723–729 (2012).
6. Shahin, M. A., Cheng, L. & Mujah, D. Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization. J. Geotech. Geoenvironmental Eng. 4016083 (2016).
7. Park, S.-S., Choi, S.-G. & Nam, I.-H. Effect of plant-induced calcite precipitation on the strength of sand. J. Mater. Civ. Eng. 26, 6014017 (2014).
8. Feng, K. & Montoya, B. M. Drained Shear Strength of MICP Sand at Varying Cementation Levels. Ifcee 2242–2251 (2015).
9. Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H. & Nikudel, M. R. Soil Improvement using calcium carbonate precipitation and the Effective Factors on it. J. Iran. Assoc. Eng. Geol. 8, 1–12 (in persian)
10. Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H. & Nikudel, M. R. Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecol. Eng. 89, 49–55 (2016).
11. Ivanov, V. & Stabnikov, V. in Construction Biotechnology 109–138 (Springer, 2017).
12. Ivanov, V. Environmental microbiology for engineers. (CRC Press, 2015).
13. Yasuhara, H., Hayashi, K. & Okamura, M. in Geo-Frontiers 2011: Advances in Geotechnical Engineering 3984–3992 (2011).
14. Carmona, J. P. S. F., Oliveira, P. J. V. & Lemos, L. J. L. Biostabilization of a Sandy Soil Using Enzymatic Calcium Carbonate Precipitation. Procedia Eng. 143, 1301–1308 (2016).
15. Zhao, Q. et al. Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease. J. Mater. Civ. Eng. 26, 4014094 (2014).
16. PTCC. Persian Type Culture Collection. Available at:http://ptcc.irost.org/DBank-details.asp?id=27&code=0. (Accessed: 4th March 2017)
17. ATCC. Sporosarcina pasteurii (Miquel) Yoon et al. ATCC ® 11859TM. Available at: https://www.lgcstandards-atcc.org/products/all/11859.aspx?geo_country=de#culturemethod. (Accessed: 4th March 2017)
18. Li, S. A laboratory study of the effects of bio-stabilization on geomaterials. (2013).
19. Lin, H., Suleiman, M. T., Brown, D. G. & Kavazanjian, E. Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation. J. Geotech. Geoenvironmental Eng. 142, 04015066 (2015).
20. Kalantary, F. & Kahani, M. Evaluation of the Ability to Control Biological Precipitation to Improve Sandy Soils. Procedia Earth Planet. Sci. 15, 278–284 (2015).
21. Ivanov, V. & Stabnikov, V. in Construction Biotechnology 1–22 (Springer, 2017).