[1] Sivakumar B. 2000 Chaos theory in hydrology: Important issues and interpretations. Journal of Hydrology, 227, 1-20.
[2] Kocak K., Saylan L. & Sen O. 2000 Nonlinear time series prediction of O3 concentration in Istanbul. Atmospheric Environment, 34, 1267-1271.
[3] Argyris J., Faust G. & Haase M. 1994 An Exploration of Chaos. Elsevier Science B.V.
[4] Solomatine D.P., Velickov S. & Wust J.C. 2001 Predicting water levels and currents in the North Sea using chaos theory and neural networks. Proc. 29th IAHR Congress, Beijing, China, pp. 1-11.
[5] Stehlik J. 2003 Deterministic chaos in runoff series. Czech Hydro Meteorological Institute, Department of Experimental Hydrology, Prague.
[6] Khan S., Ganguly A.R. & Saigal S. 2005 Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Processes in Geophysics, 12, 41-53.
[7] Damle C. & Yalcin A. 2007 Flood prediction using time series data mining. Journal of Hydrology, 333, 305-316.
[8] Shang P., Na X. & Kamae S. 2009 Chaotic analysis of time series in the sediment transport phenomenon. Chaos, Solutions and Fractals, 41, 368-379.
[9] Wu J., Lu J. & Wang J. 2009 Application of chaos and fractal models to water quality time series prediction. Environmental Modelling and Software, 24, 632-636.
[10] Ghorbani M.A., Kisi O. & Alinezhad M. 2010 A probe into the chaotic nature of daily stream flow time series by correlation dimension and largest Lyapunov methods. Applied Mathematical Modelling, 34, 4050-4057.
[11] Fattahi M.H., Talebbeydokhti N., Moradkhani H. & Nikooee E. 2013 Revealing the chaotic nature of river flow. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 37, 437-456.
[12] Tavakoli A.R. & Babazadeh H. 2015 Capability evaluation of time series and chaos theory in estimating reference crop evapotranspiration (Torbat-e-Heydarieh synoptic station, Khorasan Razavi). Iranian Journal of
Water Research, 9, 111-120. (In Persian)
[13] Hassanzadeh Y., Lotfollahi-Yaghin M.A., Shahverdi S., Farzin S. & Farzin N. 2013 De-noising and prediction of time series based on the wavelet algorithm and chaos theory (Case study: SPI drought monitoring index of Tabriz city). Iranian Water Resources Research, 8, 1-13.
(In Persian)
[14] Sang Y.F. 2013 A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric Research, 122, 8-15.
[15] Anonymous, 2007 Report of water allocation in resources development projects. Ministry of Energy, Tehran, Iran.
[16] Hense A. 1987 On the possible existence of a strange attractor for the southern oscillation. Beitrage zur Physik der Atmosphare, 60, 34-47.
[17] Rodriguez-Iturbe I., De Power F.B., Sharifi M.B. & Georgakakos K.P. 1989 Chaos in rainfall. Water Resources Research, 25, 1667-1675.
[18] Sivakumar B., Liong S.Y., Liaw C.Y. & Phoon K.K. 1999. Singapore rainfall behavior: Chaotic? International Journal of Hydrological Engineering, ASCE, 4, 38-48.
[19] Berndtsson R., Jinno K., Kawamura A., Olsson J. & Xu S. 1994 Dynamical systems theory applied to long-term temperature and precipitation time series. International Journal of Trends in Hydrology, 1, 291-297.
[20] Jayawardena A.W. & Lai F. 1994 Analysis and prediction of chaos in rainfall and stream flow time series. International Journal of Hydrology, 153, 23-52.
[21] Sivakumar B., Berndtsson R., Olsson J., Jinno K. & Kawamura A. 2000. Dynamics of monthly rainfall-runoff process at the Gota basin: A search for chaos. International Journal of Hydrology and Earth System Sciences, 4, 407-417.
[22] Sivakumar B. 2001 Rainfall dynamics at different temporal scales: A chaotic perspective. International Journal of Hydrology and Earth System Sciences, 5, 645-651.
[23] Gaume E., Sivakumar B., Kolasinski M. &
Hazoume L. 2006 Identification of chaos in rainfall temporal disaggregation. International Journal of Hydrology, 328, 56-64.
[24] Abarbanel H. 1996 Analysis of Observed Chaotic Data. Springer-Verlag, New York.
[25] Holzfuss J. & Mayer-Kress G. 1986 An approach to error-estimation in the application of dimension algorithms. In: Dimensions and Entropies in Chaotic Systems, Mayer-Kress, G. (Ed.), Springer-Verlag, pp. 114-147.
[26] Islam M.N. & Sivakumar B. 2002 Characterization and prediction of runoff dynamics: A nonlinear dynamical view. International Journal of Advances in Water Resources, 25, 179-190.
[27] Frazier C. & Kockelman K. 2004 Chaos theory and transportation systems: An instructive example. Proc. of 83rd Annual Meeting of the Transportation Research Board, Washington D.C.
[28] Grassberger P. & Procaccia I. 1983 Characterization of strange attractors. Physical Review Letters, 50, 346-349.
[29] Cao L. 2007 Practical method for determining the minimum embedding dimension of scalar time series. Physica D, 110, 43-50.
[30] Strozzi L., Tenrreiro E., Noe C. & Rossi T. 2007 Application of non-linear time series analysis techniques to Nordic spot electricity market data. Liuc Papers, Series Tecnologia, 11, 1-5.
[31] Hilborn T. 2000 Chaos and Nonlinear Dynamics. Oxford University Press.
[32] Akay M., Henry B., Lovell N. & Camacho F. 2012 Nonlinear Dynamics Time Series Analysis. Wiley Online Library.
[33] Banks F., Dragan V. & Jones A. 2003 Chaos, A Mathematical Introduction. Cambridge University Press