[1] Hanna S. R. 1998 Air quality model evaluation and uncertainty. Journal Air Pollution Control Association, 38(4), 406-412.
[2] Kioutsioukis L., Tarantola S., Saltelli A. & Gatelli D. 2004 Uncertainty and global sensitivity analysis of road transport emission estimates. Atmospheric Environment, 38(38), 6609-6620.
[3] Özkaynak H., Frey H. C., Burke J. & Pinder R. W. 2009 Analysis of coupled model uncertainties in sourceto-dose modeling of human exposures to ambient air pollution: A PM2.5 case study. Atmospheric Environment, 43(9), 1641-1649.
[4] Noori R., Hoshyaripour G., Ashrafi K. & Rasti O. 2013 Introducing an appropriate model using support vector machine for predicting carbon monoxide daily concentration in Tehran atmosphere. Iranian Journal of Health and Environment, 6(1), 1-10 (In Persian).
[5] Noori R., Ashrafi K. & Ajdarpour A. 2008 Comparison of ANN and PCA based multivariate linear regression applied to predict the daily average concentration of CO: A case study of Tehran. Journal of the Earth and Space Physics, 34(1), 135-152 (In Persian).
[6] Noori R., Hoshiyaripour G., Ashrafi K. & Araabi B. N. 2010 Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44(4), 476- 482.
[7] Lu W. Z. & Wang W. 2005 Potential assessment of the ‘‘support vector machine’’ method in forecasting ambient air pollutant trends. Chemosphere, 59(5), 693-701.
[8] Lu W. Z. & Wang D. 2008 Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Science of the Total Environment, 395(2), 109-116.
[9] Lu W. Z., Wang W. J., Fan H. Y., Leung A. Y. T., Xu Z. B. & Lo S. M. 2002 Air pollutant parameter forecasting using support vector machines. IEEE, 1, 630-635.
[10] Osowski S. & Garanty K. 2007 Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Application of Artificial Intelligent, 20(6), 745-755.
[11] Salazar-Ruiz E., Ordieres J. B., Vergara E. P. & Capuz-Rizo S. F. 2008 Development and comparative analysis of tropospheric ozone prediction models using linear and artificial intelligence-based models in Mexicali, Baja California (Mexico) and Calexico, California (US). Environmental Modelling and Software, 23(8), 1056-1069.
[12] Feng Y., Zhang W., Sun D. & Zhang L. 2011 Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification. Atmospheric Environment, 45(11), 1979-1985.
[13] Yeganeh B., Motlagh M. S. P., Rashidi Y. & Kamalan H. 2012 Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model. Atmospheric Environment, 55, 357- 365.
[14] Singh K. P., Gupta S. & Rai P. 2013 Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmospheric Environment, 80, 426-437.
[15] Weizhen H., Zhengqiang L., Yuhuan Z., Hua X., Ying Z., Kaitao L., Donghui L., Peng W. & Yan M 2014 Using support vector regression to predict PM10 and PM2.5. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing, 17(1), pp. 012268.
[16] Noori R., Karbassi A., Ashrafi K., Ardestani M., Mehrdadi N. & Bidhendi G. R. N. 2012 Active and online prediction of BOD5 in river systems using reduced-order support vector machine. Environmental Earth Sciences, 67(1), 141-149.
[17] Noori R., Yeh H. D., Abbasi M., Kachoosangi F. T. & Moazami S. 2015 Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand. Journal of Hydrology, 527, 833-843.
[18] Moazami S., Noori R., Amiri B. J., Yeganeh B., Partani S. & Safavi S. 2016 Reliable prediction of carbon monoxide using developed support vector machine. Atmospheric Pollution Research, 7(3), 412-418.
[19] Vapnik V. N. 1998 Statistical Learning Theory. Wiley, New York.
[20] Fletcher R. 1987 Practical Methods of Optimization. Wiley, New York.
[21] Abe S. 2005 Support Vector Machines for Pattern Classification. Springer-Verlag, London.
[22] Noori R., Karbassi A. R., Moghaddamnia A., Han D., Zokaei-Ashtiani M. H., Farokhnia A. & Ghaffari-Goushe M. 2011 Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401(3), 177-189.
[23] Abbaspour K. C., Yang J., Maximov I., Siber R., Bogner K., Mieleitner J., Zobrista J. & Srinivasan R. 2007 Modeling hydrology and water quality in the pre alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2), 413-430.
[24] Noori R., Safavi S. & Shahrokni A. A. N. 2013 A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of fiveday biochemical oxygen demand. Journal of Hydrology, 495, 175-185.
[25] Noori R., Deng Z., Kiaghadi A. & Kachoosangi F. T. 2016 How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?. Journal of Hydraulic Engineering, DOI:10.1061/(ASCE)HY.1943- 7900.0001062.
[26] Dehghani M., Saghafian B., Nasiri Saleh F., Farokhnia A. & Noori R. 2014 Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte‐Carlo simulation. International Journal of Climatology, 34(4), 1169-1180.
[27] Noori R., Ghiasi B., Sheikhian H., Adamowski J. F. 2017 Estimation of the dispersion coefficient in natural rivers using a granular computing model. Journal of Hydraulic Engineering, DOI:10.1061/(ASCE)HY.1943- 7900.0001276.