[1] Doebling S. W., Farrar C. R. & Prime M. B. 1998 Summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 30 91–105.
[2] Sohn H., Farrar C. R., Hemez F. M., Shunk D. D., Stinemates D. W. & Nadler B. R. 2004 A Review of Structural Health Monitoring Literature from 1996-2001, Report LA-13976-MS, Los Alamos National Laboratory, the US.
[3] Ostachowicz W, M, 2008 Damage detection of structures using spectral finite element method. Computers and Structures, 86 454–462.
[4] Khaji N. & Kazemi Noureini H. 2012 Detection of a through-thickness crack based on elastic wave scattering in plates, Part II: Inverse Solution. Asian Journal of Civil Engineering, 13 433–454.
[5] Yang Z. L., Liu G. R. & Lam K. Y. 2002 An inverse procedure for crack detection using integral strain measured by optical fibers. Smart Materials and Structures, 11 72–78.
[6] Rabinovich D., Givoli D. & Vigdergauz S. 2009 Crack identification by ‘arrival time’ using XFEM and a genetic algorithm. International Journal for Numerical Methods in Engineering, 77 337–359.
[7] Waisman H., Chatzi E. & Smyth A. W. 2010 Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. International Journal for Numerical Methods in Engineering, 82 303–328.
[8] Chatzi E. N., Hiriyur B., Waisman H. & Smyth A. W. 2011 Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures. Computers and Structures, 89 556–570.
[9] Sun H., Waisman H. & Betti R. 2014 A multiscale flaw detection algorithm based on XFEM. International Journal for Numerical Methods in Engineering, 100 477–503.
[10] Nanthakumar S., Lahmer T. & Rabczuk T. 2014 Detection of multiple flaws in piezoelectric structures using XFEM and level sets. Computer Methods in applied Mechanics and engineering, 275 98–112.
[11] Yan G., Sun H. & Waisman H. 2015 A guided Bayesian inference approach for detection of multiple flaws in structures using the extended finite element method. Computers and Structures 152 27–44.
[12] Moes N., Dolbow J. & Belytschko T. 1999 A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46 131–150.
[13] Belytschko T. & Black T. 1999 Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45 601–620.
[14] Sukumar N., Chopp D. L., Moes N. & Belytschko T. 2000 Modeling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 190 6183–6200.
[15] Dolbow J., Sukumar N., Daux C., Moes N. & Belytschko T. 2000 Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 48 1741–1760.
[16] Moran B., Sukumar N., Moes N. & Belytschko T. 2000 Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering, 48 1549–1570.
[17] Moes N., Dolbow J. & Belytschko T. 2000 Modeling fracture in mindlin-reissner plates with the extended finite element method. International Journal of Solids and Structures, 37 7161–7183.
[18] Mohammadi S. 2002 Extended Finite Element Method. Wiley/Blackwell Publishing, the UK.
[19] Kennedy J. & Eberhart R. 1995 Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, 1942–1948.
[20] Shi Y. & Eberhart R. C. 1997 A modified particle swarm optimizer. Proc. IEEE Int. Conf. on Evolutionary Computation, 303–308.
[21] Kaveh A., Bakhshpoori T. & Afshari E. 2014 An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm. Computers and Structures, 143 40–45.
[22] Kaveh A. 2014 Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer Verlag, Switzerland