[1] Aiken, I. D., Nims, D. K., Whittaker, A. S., & Kelly, J. M. (1993). Testing of passive energy dissipation systems. Earthquake spectra, 9(3), 335-370.
[2] Spencer Jr, B. F., & Nagarajaiah, S. (2003). State of the art of structural control. Journal of structural engineering, 129(7), 845-856.
[3] Soong, T. T., & Spencer, B. F. (2002). Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243-259.
[4] Kelly, J. M., Skinner, R. I., & Heine, A. J. (1972). Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bulletin of NZ Society for Earthquake Engineering, 5(3), 63-88.
[5] Skinner, R. I., Kelly, J. M., & Heine, A. J. (1974). Hysteretic dampers for earthquake‐resistant structures. Earthquake Engineering & Structural Dynamics, 3(3), 287-296.
[6] Tagawa, H., & Gao, J. (2012). Evaluation of vibration control system with U-dampers based on quasi-linear motion mechanism. Journal of Constructional Steel Research, 70, 213-225.
[7] Kobori, T., Miura, Y., Fukusawa, E., Yamada, T., Arita, T., Takenake, Y., ... & Fukumoto, T. (1992). Development and application of hysteresis steel dampers. In Proceedings of the 10th World Conference on Earthquake Engineering (pp. 2341-2346).
[8] Chan, R. W., & Albermani, F. (2008). Experimental study of steel slit damper for passive energy dissipation. Engineering Structures, 30(4), 1058-1066.
[9] Nakashima, M., Iwai, S., Iwata, M., Takeuchi, T., Konomi, S., Akazawa, T., & Saburi, K. (1994). Energy dissipation behaviour of shear panels made of low yield steel. Earthquake engineering & structural dynamics, 23(12), 1299-1313.
[10] Maleki, S., & Bagheri, S. (2010). Pipe damper, Part I: Experimental and analytical study. Journal of Constructional Steel Research, 66(8), 1088-1095.
[11] Maleki, S., & Bagheri, S. (2010). Pipe damper, Part II: Application to bridges. Journal of Constructional Steel Research, 66(8), 1096-1106.
[12] Maleki, S., & Mahjoubi, S. (2013). Dual-pipe damper. Journal of Constructional Steel Research, 85, 81-91.
[13] Maleki, S., & Mahjoubi, S. (2014). Infilled-pipe damper. Journal of Constructional Steel Research, 98, 45-58.
[14] Bergman, D. M., & Goel, S. C. (1987). Evaluation of cyclic testing of steel-plate devices for added damping and stiffness. Department of Civil Engineering, University of Michigan.
[15] Tsai, K. C., Chen, H. W., Hong, C. P., & Su, Y. F. (1993). Design of steel triangular plate energy absorbers for seismic-resistant construction. Earthquake spectra, 9(3), 505-528.
[16] Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy dissipation systems for seismic applications: current practice and recent developments. Journal of structural engineering, 134(1), 3-21.
[17] Whittaker, A. S., Bertero, V. V., José Luis Alonso G., & Thompson, C. (1989). Earthquake simulator testing of steel plate added damping and stiffness elements (Vol. 89, No. 2). Earthquake Engineering Research Center, University of California at Berkeley.
[18] Tsai, C. S., & Tsai, K. C. (1995). TPEA device as seismic damper for high-rise buildings. Journal of engineering mechanics, 121(10), 1075-1081.
[19] Tsai, K. C., & Li, C. W. (1994, March). Seismic Analysis of Passive Energy Dissipation Subsystems by Hybrid Experiments. In Proceedings of the 12th International Modal Analysis (Vol. 2251, p. 1520).
[20] ABAQUS. 'ABAQUS Documentation'. 6.13-1 ed: Dassault Systèmes; 2013.
[21] Seismic rehabilitation of existing buildings (ASCE). ASCE/SEI Standard 41-06 with supplement 1, American Society of Civil Engineers, Reston, VA.2007.
[22] BHRC, (2015). Road, Housing and Urban Development Research Center, PART SAZE SAINAR engineering Company report on TADAS damper experiments. Report No. 1122- س/ 9 (in Persian).