]1[ ریاحی؛ ر.؛ "بررسی کارایی پلیآلومینیومکلراید در افزایش راندمان تصفیهخانههای آب"؛ پایاننامه کارشناسی ارشد؛ دانشگاه صنعت آب و برق (شهید عباسپور)؛ تهران، 1385.
[2] Clark; T.; Stephenson; T.; “Development of a Jar testing protocol for chemical phosphorus removal in activated sludge using statistical experimental design”; Wat. Res.; Vol. 33, .; 33(7), 1999, 1730-1734.
[3] Gagnon; C.; Grandjean; B.P.A.; Thibault; J.; “Modelling of coagulant dosage in a water treatment plant”; Artificial Intelligence in Engineering 11,1997, 401–404.
[4] Leeuwen; V.; “Empirical mathematical models and artificial neural networks for the determination of alum doses for treatment of southern Australian surface waters”; Aqua; 48(3), 1999, 115-127.
[5] Maier, H.R., Morgan, N., & Christopher, W.K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters, Environmental Modelling & Software, 19, 2004, 485–494.
[6] Larmrini; B.; Benhammou; A.; Le Lann; M.-V.; & Karama; A.; “A neural software sensor for online prediction of coagulant dosage in a drinking water treatment plant”; Transactions of the Institute of Measurement and Control; 27(3), 2005, 195–213.
[7] Czerniczyniec; M.; Faras; S.; Magallanes; J.; & Cicerone; D.; “Arsenic(V) adsorption onto biogenic hydroxyapatite: solution composition effects”; Water Air and Soil Pollution; 180(1–4), 2007, 75–82.
[8] Wu; G.-D.; Lo; S.-L.; “Predicting real time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system”; Engineering Applications of Artificial Intelligence; 21(8), 2008, 1189-1195.
[9] Heddam; S.; Bermad; A.,; and Dechemi; N.; “ANFIS-based modelling for coagulant dosage in drinking water treatment plant: A case study” Environmental Monitoring and Assessment; 184 (4), 2012, 1953-1971.
[10] Guan-De; Wu; Shang-Lien; Lo; “Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system”; Engineering Applications of Artificial Intelligence 21; 2008, 1189– 1195.
[11] Guan-De; Wu; Shang-Lien; Lo; “Effects of data normalization and inherent-factor on decision of optimal coagulant dosage in water treatment by artificial neural network”; Expert Systems with Applications 37; 2010, 4974–4983.
]12[ داغبندان؛ ا.؛ اکبریزاده؛ م.؛ "طراحی ساختارهای ANFIS و شبکههای عصبی GMDH برای پیشبینی میزان بهینه مصرف ماده منعقدکننده در فرآیند تصفیه آب. مطالعه موردی: تصفیهخانه بزرگ آب گیلان"؛ مجله آب و فاضلاب؛ قرارگرفته در نوبت چاپ زمستان 93، به نشانی: wwcerd.com.
[13] Bello; O.; Hamam; Y.; Djouani; K.; “Coagulation process control in water treatment plants using multiple model predictive control”; Alexandria Engineering Journal, 53(4), 2014, 939–948.
[14] Bello; O.; Hamam; Y.; Djouani; K.; “Modelling of a coagulation chemical dosing unit for water treatment plants using fuzzy inference system”; Preprints of the 19th World Congress, The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 2014.
[15] Tanaka; H.; “Fuzzy data analysis by possibility linear models”; Fuzzy Sets and Systems; 24(3), 1987, 363- 375.
[16] Kim; B.; Bishu; R.R.; “Evaluation of fuzzy linear regression modeles by comparing membership functions”; Fuzzy Sets and System; Vol. 100; 1998.
[17] Ching-Gung; W.; Chih-Sheng; L.; “Development of a cost function for wastewater treatment”; Fuzzy sets and systems; 106, 1997, 143- 701.
[18] Baxter; C.W.; Stanley; S.J.; Zhang; Q.; “Development of a fullscale artificial neural network model for the removal of natural organic matter by enhanced coagulation”; Journal of Water Supply Research and Technology; Aqua 48 (4), 1999, 129–136.
[19] Bestamin; O.; Ahmet; D.; “Neural network prediction model for the methane fraction in biogas from field scale landfill bioreactors”; Environmental Modelling & Software; 22, 2007, 15 -822.
[20] Rumelhart; D. E.; & McClelland; J. L.; “Parallel distribution processing: Exploration in the microstructure of cognition”; Cambridge, MA: MIT Press (p. 1), 1986.
[21] Hornik; K.; Stinchcombe; M.; White; H.; “Multi layer Feedforward networks are universal approximators”; Neural Networks; 2, 1989, 359–366.
[22] Zurada; J.M.; “Introduction to Artificial Neural Systems”; PWS; Singapore; 1992, 195–196.
[23] Cohen; S.; & Intrator; N.; “Automatic model selection in a hybrid perceptron/ radial network”; Information Fusion: Special Issue on Multiple Experts; 3(4), 2002, 259–266.
[24] Hwarng; H.B.; Ang; H. T.; “A simple neural network for ARMA (p; q) time series”; Omega 29; 2001, 319 – 333.
[25] Yen.; K.K.; Ghoshray; S.; “A linear regression model using triangular fuzzy number coefficient”; Fuzzy Sets and Systems; Vol. 106, 1999.
[26] Zadeh; L.A; “Fuzzy sets”; Information and Control; 8(3), 1965, 338-353.
[27] Williams; K.S.; D.G.; Tarboton; “The ABC’s of Snowmelt: A Topographically Factorized Energy Component Snowmelt Model”; International Conference on Snow Hydrology; Brownsville Vermont, USA, 1998.
[28] Jang; J.S.R.; “ANFIS: Adaptive-network-based fuzzy inference system”; Systems, Man and Cybernetics, IEEE Transactions, 23(3), 1993, 665-685.