بررسی آزمایشگاهی مدل های ترکیبی سکو، شیب جانبی و شکاف در کاهش فرسایش بستر پیرامون پایه های پل

نویسندگان
1 دانشگاه سهند تبریز دانشکده عمران
2 دانشگاه تبریز
چکیده
در این مقاله نتایج آزمایش 12 مدل پایه پل مرکب جهت کاهش حداکثر عمق آبشستگی در شرایط آب زلال ارائه گردیده است. گروههای آزمایشی به ترتیب عبارتند از 1) پایه سکویی و پایه نیمه مخروطی 2) ترکیب پایه سکویی با مقاطع نیمه مخروطی با قطر متغیر در بستر 3) ترکیب پایه سکویی با مقاطع نیمه مخروطی با قطر ثابت در بستر و 4) ترکیب گروه سوم با شکاف ذوزنقه ای. در پایه سکویی کاهش قابل توجه عمق آبشستگی نسبت به پایه استوانه ای مرجع مشاهده گردید. این کاهش در مقطع نیمه مخروطی نیز وجود داشته لیکن مقدار آن بسیار کمتر از پایه سکویی میباشد. در گروه دوم، پایه مرکب نیمه مخروطی با شیب 2 درجه، کمترین فرسایش بستر را نسبت به دو مدل دیگر داشته است. در این گروه، عمق آبشستگی نسبت به مدل پایه سکویی افزایش داشته است لیکن مقدار آن نسبت به پایه استوانه ای مرجع کاهش یافته است. در گروه سوم، با ثابت نگه داشتن قطر پایه در عمق بستر، کاهش بسیار اندکی در عمق آبشستگی مشاهده گردید. از اینرو در پایه های مرکب نیمه مخروطی، افزایش قطر پایه در تراز بستر، تشدید فرسایش بستر را به همراه داشته است. در گروه چهارم نیز اعمال شکاف در پایه های مرکب، نقش موثری در افزایش نقش محافظتی آنها نداشته است.در مجموع تاثیر مدل پایه سکویی در کاهش عمق آبشستگی به مراتب بیشتر از سایر پایه ها بوده و ترکیب ابزارهای مختلف بازدارنده فرسایش بستر، نمیتواند در تمامی موارد تاثیر مثبتی در کاهش عمق آبشستگی داشته باشد.

کلیدواژه‌ها


عنوان مقاله English

Experimental Study of Combined models of berm, side slope and slot in decreasing the bed erosion around bridge piers

چکیده English

In this paper, the experimental results of 12 combined bridge pier models to reduce the maximum scour depth in clear-water condition have been presented. Experimental models are classified in four groups, namely: 1) berm and semi-conical piers, 2) combination of berm and semi-conical piers with variable diameter in the bed, 3) combination of berm and semi-conical piers with constant diameter in the bed, and 4) combination of third group with trapezoidal centered slot. In this regard, 12 laboratory piers models have been examined in a flume of 12m long, 1m wide and 0.85m deep. At first, for the reference cylindrical pier model, the experiments have been carried out for 48 hours and it has been shown that the time of 24~35 hours is usually sufficient to reach the equilibrium condition. At the beginning of the each test, the time interval to get the scour depth was chosen very short (e.g. every ten minutes), but this interval increased gradually with continuing the experiment so that at the end of experiment it was 1 hrs. Firstly, significant decrease (up to 46 percent) in scour depth was observed for berm pier with respect to the cylindrical reference pier. This reduction was also observed for semi-conical pier, however, it was much lower than that of the berm pier. For the second group, the semi-conical combined pier with side slope angle of 2 degrees of model piers had the least bed erosion in comparison to that of the other two groups. For this model, the width of the berm is larger and diameter of the pier is smaller in bed level. Scour depth is then increased in comparison to that of the berm pier model in this group but it is decreased when compared with that of the cylindrical reference pier. Very slight decrease has been observed in the scour depth for the third group model piers by keeping the pier diameter constant in the bed. Hence, increasing the pier diameter in the bed level has intensified the bed erosion in the semi-conical combined piers. Finally, applying slot in the combined piers of third group was ineffective in increasing the protective role of model piers for the fourth group. Therefore, it can be concluded that the effect of berm model pier in decreasing scour depth was much more than the other countermeasures for the piers and their combinations. Then it was found that the different countermeasures for the bed erosion could not have positive influence on decreasing the scour depth for all the cases and a combined model of them may be less effective against scour process than a single countermeasure. The comparison of maximum scour depth has been conducted for all models with relative to those of the cylindrical reference and berm piers.

کلیدواژه‌ها English

Bridge pier
Combined Model
Berm
Semi Conical Pier
slot
[1]      Laursen, E.M., Toch, A., Scour Around Bridge Piers and Abutments, Iowa Highway Research Board Bulletin, No. 4, Bureau of Public Roads, Iowa, 1956.
[2]      Shen, H.W., Schneider, V.R., "Local scour Around Bridge Piers", Journal of Hydraulics Division, Proceedings of the American Society of Civil Engineers, 95(6), 1969, 1991-1941.
[3]      Melville, B. W., Local scour at bridge sites, Rep. No. 117, Dept. of Civil Engineering, School of Engrg., Univ. of Auckland, Auckland, New Zealand, 1975.
[4]      Breusers, H.N.C., Rudkivi, A.J., Scouring-Hydraulic Structures Design Manual”. IAHR, A.A. Balkema, Rotterdam, Netherland, 1991.
[5]      Dargahi, B., "Controlling Mechanism of Local Scouring", Journal of Hydraulic Engineering, ASCE, 116(10), 1989, 1197-1214.
[6]      Sumer, B.M., Fredsoe, J., Christiansen, N., and Hensen, S.B., Bed shear stress and scour around coastal structures, Proc. 24th International Coastal Engineering Conference, e. Robert M. Ragan, ed., Kobe, Japan, ASCE, 1994, 1595-1609.
[7]      Fredsoe, J., and Sumer, B.M., Scour at the around head of a rubble-mound break-water, Coast. Eng., 29, 1997.
[8]      Bozkus, F., and Yildiz, O., "Effects of Inclination of Bridge piers on scouring depth", Journal of Hydraulic Engineeringm, ASCE, 130(8), 2004, 827-832.
[9]      Pour Ahmadi, M., Experimental and Numerical Investigation of Local Scour Around Conical and Pyramidal Piers, Master’s thesis, Sahand University of Technology, 2011.
[10]   Mehrzad, S., Experimental and Numerical Investigation of the effect of Slotted Conical Piers on Scour Process, Master’s thesis, Sahand University of Technology, 2012.
[11]   Chabert, J., & Engeldinger P., Study of Scour at Bridge Piers, Rep., Laboratories National d' Hydraulique, Chatou, France, 1956.
[12]   Laursen, E.M., Toch, A., Scour around bridge piers and abutments. Iowa Highway Research Board Bulletin, No. 4, Bureau of Public Roads, Iowa, 1956.
[13]   Sterling Jones, J., Kilgore, R.T., & Mistichelli, M.P., "Effect of Footing Location on Bridge Pier Scour", Journal of Hydraulic Engineering, ASCE, 118(2), 1992, 280-290.
[14]   Melville, B.W., "Discussion of effect of Footing Location on Bridge pier Scour", Journal of Hydraulic Engineering, ASCE, 119(2), 1993, 296-298.
[15]   Chiew, Y. M., " Scour Protection at Bridge Piers", Journal of Hydraulic Engineering, ASCE, 118(9), 1992, 1260-1269.
[16]   Kumar, V., Rang Raju, K.G., & Vittal, N., "Reduction of Local Scour around Bridge piers Using Slot & Collars", Journal of Hydraulic Engineering, ASCE, 125(12), 1999, 1302-1305.
[17]   Christensen, Z.M., Reduction of Local Scour around Bridge Piers: Combined System of Aerofoil and Slot", BS Thesis, Department of Engineering and Surveying, University of Southern Queensland, 2009.
[18] نادری بنی، م.، کنترل و کاهش آبشستگی موضعی در پایه های پل با استفاده از شکاف، پایان نامه کارشناسی ارشد مهندسی آب، دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان، 1380.