[1] S Pettie, "On the Shortest Path and Minimum Spanning tree problems", PhD thesis, department of computer science, The University of Texas at Austin, 2003.
[2] S Chung and A Condon, “Parallel implementation of Boruvka’s minimum spanning tree algorithm”, Computer sciences department, University of Wisconsin, IEEE Journal, 2003, Vol. 7, No 1.
[3] T M Murali, “Applications of minimum spanning trees”, Science press, 2009, In Proc, 39th Annual IEEE Symposia.
[4] S P Bradley, A C Hax and T L Magnanti, Applied mathematical programming, Addison Wesley, 1977.
[5] D Eppstein, “Dynamic euclidean minimum spanning trees and extreme of binary functions”, Department of information and computer science, University of California, Irvine, 2009,
Tech. Rep. 92-88, ICS, UCI.
[6 پیش بینی تقاضای مسافری، مطالعات جامع حمل و نقل کشور، فاز سوم، گزارش جلد 3، وزارت راه و ترابری، 1373 ،تهران.
[7] C Feremans, M Labbe and G Laporte , “The generalized minimum spanning tree problem: polyhedral analysis and branch-and-cut algorithm”, Networks, 2004, Vol.43, 71-86.
[8] J A Fill and J M Steele, “Exact expectations of minimal spanning trees for graphs with random edge weights”, 2004, Acheson University.
[8] A Kanafani, Transportation demand analysis, First Edition, McGraw Hill, New York, 1983.
[9] J D Ortuzar and L G Willumsen, Modeling transport, Third Edition, John Wiley and Sons, 2004.
[10] M Patrikson, “The traffic assignment problems- models and methods”, Linkopring Institute of technology, Linkoping, Sweden., 2003.
[11] Y Sheffi, Urban transportation networks: Equilibrium analysis with mathematical programming methods, Prentice-Hall, New Jersey, 1985.