بررسی آزمایشگاهی اثر شرایط هیدرولیکی ورودی بر ساختار جریان‌های گل‌آلود

نویسندگان
1 دانشگاه تربیت مدرس
2 دانشگاه صنعتی شریف
چکیده
- رسوبات انباشته شده در مخازن سدها، گنجایش مخزن را بسیار کاهش می دهد. جریان های گل آلود در جابه جایی و رسوبات ریزدانه در مخازن سدها، نقش مهمی دارند. در این پژوهش، اثر تغییرات شرایط هیدرولیکی ورودی جریان گل آلود بر ویژگی هایی از پیشانی، بدنه و ساختارهای آشفتگی موجود در جریان گل آلود، بررسی آزمایشگاهی شده است. این ویژگی­ها با یک دوربین فیلم برداری و یک دستگاه سرعت­سنج صوتی، اندازه­گیری شده است. نتایج نشان می دهد که با کاهش عدد فرود چگالی ورودی، سرعت پیشانی و بیشینه سرعت، در بدنه جریان افزایش می­یابد. مقادیر مثبت تنش برشی رینولدز نزدیک کف نشان می­دهد که در این بخش، پدیده حاکم، جاروبی یا بیرون­رانی است در حالی که در فصل مشترک جریان گل آلود و سیال محیطی، پدیده اندرکنش رو به بیرون یا اندرکنش رو به داخل، حاکم است.

کلیدواژه‌ها


عنوان مقاله English

Experimental Investigation of Entrance Hydraulic Condition Effects on Flow Structure in Turbidity Currents

نویسندگان English

M. Naji Abhari 1
M. Ghosian 1
Bahar Firoozabadi 2
1 Tarbiat Modares University
2 Sharif University
چکیده English

Water-storage capacity of reservoir reduces mainly due to sediment laden. Turbidity current has an important role on sediment transfer in reservoir. It is necessary to study sediment interaction and flow in order to predict mechanism of turbidity current. In this paper effects of changes in entrance hydraulic condition of turbidity current on head velocity, layer-average thickness, layer-average velocity, body velocity and turbulent structure have investigated experimentally. The front velocity of the head of turbidity current was determined by video recording and body velocity and turbulence parameters measured by Vecterino. When the initial Froude number decreases the maximum velocity increases in body and head. Positive shear Reynolds stress near bed indicates that major contributor in this region is sweep or ejection while major contributor near interface is inward interaction or outward interaction. Entrainment is dominated at interface. The investigation shows that head velocity depends on inlet Froude number and inlet Reynolds number. Variation of head velocity along channel is exponential. The maximum reduction of head velocity takes place at whereas variation of head velocity at is negligible. Driving forces at are inertial force and gravity force. Driving force decreases after hydraulic jump and only gravity force remains as driving force. Therefore head velocity is constant at . Head velocity increases when inlet Reynolds number increases. Body velocity increases when inlet Froude number decreases, as gravity force increases when inlet Froude number decreases. Effects of inlet Froude as number on body velocity is negligible at the end of channel. Negative value of body velocity at the interface of turbidity current and ambient fluid indicates entrainment phenomenon at this region. When inlet Froude number decreases, vertical component of velocity increases too,then maximum velocity approaches to the bed. Elevation of maximum velocity increases along the channel due to sedimentation of particles and decreases of vertical component of velocity. Body velocity decreases along the channel due to decrease of inertial force. Vertical Reynolds stress decreases when inlet Froude number decreases. Because of increase in particle turbulence dissipates and therefore vertical Reynolds stress decreases. Oscillation of vertical Reynolds stress is due to turbulence at this region. The maximum of vertical Reynolds stress tacks place near bed and interface of turbidity current and ambient fluid and minimum of vertical Reynolds stress tacks place near maximum velocity elevation. Shear Reynolds stress have two maximum values. One is near the bed and the other one is near the interface of turbidity current and ambient fluid. Maximum Reynolds shear stress is positive near bed and negative near interface. Minimum of Reynolds shear stress take place near maximum velocity elevation.

کلیدواژه‌ها English

inlet Froude number
head velocity
Reynolds stress
body velocity
layer-average velocity
layer-average thickness
[1]  Peakall, J; McCaffery, W. D. and Keneller, B. C;"A process model for the evaluation morphology architecture of sinuous submarine channels."; Journal of Sediment Research; 53(6), 2001,130-151.
[2]  Middleton; G. H; "Sediment deposition from turbidity currents."; Annual Review of Earth and Planetary Sciences, 21, 1993, 89-114.
[3]  Parker, G; Fukushima, Y. and Pantin, H.M; "Self-accelerating turbidity currents."Journal of. Fluid Mechanics; 171, 1986, 145-181.
[4]  Alves, Elsa; Ferreira, Rui M. L. and Cardoso, António H; "One-dimensional numerical modeling of turbidity currents: hydrodynamics and deposition.";River Flow; 2010, 1097-1104.
[5]  Altinakar, S; Graf, W. H. and Hopfinger, E. J; "Weakly depositing turbidity current on a small slope."; Journal of Hydraulic Research; 28(1), 1990, 55-80
[1]  Thomas, L. P; Dalziel, S. B and Marino, B. M;"The structure of the head of an inertial gravity current determined by particle-tracking velocimetry."Experiments in Fluids; 34, 2003, 708–716.
[2]  Li, Tao; Zhang, Jun Hua; Tan, Guang Ming; Ma, Huai Bao and Li, Shu Xia; " Study on turbidity current head going through the changing width section.";The 18th Biennial Conference of International Society for Ecological Modelling; 2012, 214-220.
[3]  Kneller, B. C; Bennett, S. J. and McCaffrey,W. D;"Velocity structure, turbulence and fluid stresses in experimental gravity currents."Journal ofGeophysical Research; 104(C3),1999, 5381–5391.
[4]  Buckee, C; Kneller, B. and Peakall, J;"Turbulence structure in steady, solute-driven gravity currents." Particulate gravity currents; W. McCaffrey, B. Kneller, and J. Peakall, eds., Blackwell, Oxford, UK, 2009, 173–187.
[5]      McCaffrey, W. D; Choux, C. M; Baas, J. H. and Haughton, P. D. W;"Spatio-temporal evolution of velocity structure, concentration and grain-size stratification within experimental particulate gravity currents.";Marin and Petroleum Geology; 20(6-8),2003, 851–860.
[6]      Gray, T. E; Alexander, J. and Leeder, M. R;"Quantifying velocity and turbulence structure in depositing sustained turbidity currents across breaks in slope." Sedimentology; 52(3),2005, 467–488.
[7]      Choux, C. M. A; Baas, J. H; McCaffrey, W. D. and Haughton, P. D. W; "Comparison of spatio-temporal evolution of experimentalparticulate gravity flows at two different initial concentrations, based on velocity, grain size and density data." Sedimentary Geology; 179, 2005, 49–69.
[8]      Kneller, B.C; Bennett, S.J; McCaffrey, W.D; "Velocity and turbulence structure of density currents and internal solitary waves: potential sediment transport and the formation of wave ripples in deep water."Sedimentary Geology; 112, 1997, 235-250.
[9]      Keshtkar, S; Ayyoubzadeh, A; Firoozabadi, B; Afshin, H. "Experimental study of opening height of entrance gate effect on vertical distribution velocity in a turbidity current."International conference of fluvial hydraulics, Izmir, Turkey, September 3-5, 2008.
[10]  Firoozabadi, B; Afshin, H. and Bagherpour, A. "Experimental Investigation of Turbulence Specifications of Turbidity Currents.";Journal of Applied Fluid Mechanics; 3(1), 2009, 63-73.
[11]  Gerber, G; Diedericks, G and Basson, G. R; "Particle Image Velocimetry Measurements and Numerical Modeling of a Saline Density Current" Journal of Hydraulic Engineering; 137(3), 2011, 333-342.
[12]  Simpson, J.E. and Britter, R.E; "The dynamics of the head of gravity current advancing over a horizontal surface.";Journal of Fluid Mechanics; 94(3), 1979, 477-495.
[13]  Britter, R.E. and Simpson, J.E; "Experiments on the dynamics of gravity current head.";Journal of Fluid Mechanics; 88(2), 1978, 223-240
[14]  Simpson, J.E; "A comparison between laboratory and atmospheric density currents.";Quarterly Journal of the Royal Meteorological Society; 95(406), 1969, 758-765.
[15]  Tsihrintzis, V. A. and Alavian, V;"Spreading of Three-Dimensional Inclined Gravity Plumes."; Journal of Hydraulic Research; 34(5), 1996, 695-711.
[16]  Garcia, M.H. and Parsons, J.D; "Mixing at the front of gravity currents."; Dynamics of Atmospheres and Oceans; 24, 1996, 197-205.
[17]  Parsons, J.D; "Mixing mechanisms in density intrusion." PhD Thesis; 1998; University of Illinois at Urbana-Champaign
[18]  Middleton, G. V;"Experiments on Density and Turbidity Currents: I. Motion of the Head"; Canadian Journal of Earth Sciences; 3(4), 1966, 523-546.
[19]  Turner, J. S; Buoyancy Effects in Fluids; Cambridge Univ. Press; 1979.
[20]  Ellison, T. H. and Turner, J. S;"Turbulent entrainment in stratified flows." Journal of Fluid Mechanics; 6(3), 1959, 423-448.
[1]      Parker, G; Garcia, M; Fukushima, Y. and Yu, W; "Experiments on turbidity currents over an erodible bed." Journal of Hydraulic Research; 25(1), 1987, 123-147.
[2]      Alavian, V; Jirka, G; Deton, R; Johnson, M. and Stefan, H; "Density entering lakes and reservoirs" Journal of Hydraulic Engineering; 118(11), 1992, 1464-1489.
[3]      Altinakar, M.S; Graf, W.H. and Hopfinger, E.J; "Flow structure in turbidity currents." Journal of Hydraulic Research; 34(5), 1996, 713-718.
[4]     فرهانیه، ب؛ «فیزیک جریان های آشفته»؛ تهران، دانشگاه صنعتی شریف، مؤسسه انتشارات علمی، ص 290؛ 1387.
[5]      Maltese, A; Cox, E; Folkard, A. M; Ciraolo, G; Loggia, G. La. and Lombardo G; "Laboratory Measurements of Flow and Turbulence in Discontinuous Distributions of Ligulate Seagrass "Journal of Hydraulic Engineering; 133(7), 2007, 750-760.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[6]      Middleton, G.V; Southard, J.B;Mechanics of sediment movement.Sponsored by the Eastern Section of Society of Economic Paleontologists and Mineralogists; Short Course 3; SEPM; 1984.
[7]      Lu, S. S. and Willmarth, W. W;"Measurements of the structure of the Reynolds stress in a turbulent boundary layer." Journal of Fluid Mechanics; 60(30), 1973, 481–511.
[8]      Mianaei, S.J. and Keshavarzi, A.R; "Spatio-temporal variation of transition probability of bursting events over the ripples at the bed of open channel.";Stochastic Environmental Research and Risk Assessment; 22(2), 2008, 257-264.
Nezu, I. and Nakagawa, H;Turbulent in open channel flow; Balkema; Rotterdam;The Netherlands; 1993