استفاده از تئوری موجک در تحلیل دینامیکی توامانِ دیوارهای حائل بتنی و محیط خاک

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 گروه مهندسی عمران، دانشگاه فنی و مهندسی، دانشگاه شهرکرد
2 گروه مهندسی عمران - دانشکده فنی و مهندسی - دانشگاه شهرکرد - شهرکرد - ایران
3 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهرکرد
چکیده
استفاده از تئوری موجک در تحلیل مسائل دینامیکی مرتبط با مهندسی عمران روند رو به رشد دارد. تحقیق پیشرو تلاش دارد تا به بررسی تاثیر استفاده از تئوری موجک در تحلیل دینامیکی دیوار حائل بتنی، بپردازد. برای این منظور یک محیط خاکی به همراه دیوارهای حائل بتنی با ابعاد (ارتفاع) مختلف در نظر گرفته می شوند. تحلیل های عددی، بر اساس روش عددی المان محدود انجام می پذیرد. رکورد زلزله سرپل ذهاب به همراه رکوردهای حاصل از چهار مرحله (گام) فیلتر کردن آن رکورد توسط تئوری موجک، جهت تحلیل دینامیکی مورد استفاده قرار می گیرند. بنابراین، در اولین مرحله مدلسازی، رکورد زلزله سرپل ذهاب در چهار مرحله با استفاده از تئوری موجک گسسته فیلتر می شود. در واقع با هر بار استفاده از تئوری موجک تعداد داده‌های زلزله تقریباً نصف می شود. در مرحله بعد، مدل های عددی آماده شده و تحت اثر بارگذاری دینامیکی رکوردهای موجود قرار می گیرند. درصد تفاوت در نتایج تحلیل با رکوردهای حاصل از مراحل مخلتف فیلتر کردن رکورد زلزله با موجک نسبت به تحلیل با رکورد اصلی، به همراه کاهش زمان محاسبات به طور ویژه مورد ارزیابی قرار می گیرد. همانطور که انتظار می رفت، بهترین انطباق نتایج بعد از فیلتر کردن نسبت به نتایج رکورد اصلی، مربوط به فیلتر مرحله اول است. ملاحظه می شود که حتی فیلتر مرحله اول باعث می شود که زمان تحلیل حدود 60 درصد کاهش یابد.  بر اساس نتایج حاصل شده ملاحظه می شود که با افزایش ارتفاع دیوار، اختلاف نتایج بدست آمده از رکوردهای فیلتر شده نسبت به رکورد اصلی، کمتر می شود. همچنین ملاحظه شده است که تا فیلتر مرحله سه، کماکان نتایج قابل قبولی حاصل می شود؛ ضمن اینکه زمان تحلیل تقریبا 80 درصد کاهش می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Using wavelet theory in the dynamic analyses of retaining walls coupled with soil medium

نویسندگان English

AhmadReza Seifoddin 1
Heisam Heidarzadeh 2
HamedReza Zarif 3
1 Department of Civil Engineering, Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Iran.
2 Department of Civil Engineering, Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Iran
3 Department of Civil Engineering, Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Iran.
چکیده English

Retaining structure or retaining wall is a wall that acts as supporting structure and the stability of another structure. This wall is used for preventing collapse of soil and generally wherever lateral support is needed. The retaining wall can be designed as gravity, cantilever and supported. Considering that the retaining walls are essential in protecting the related structures to them, therefore, studying the dynamic behavior of these structures is very important due to the financial and human damages. Such structures should be stable against the forces acting on the wall. In addition to static loads, which are always an inseparable part of the calculations of such walls, forces such as cyclic forces caused by the movement of machinery and also dynamic forces caused by earthquake occur on the wall during the period of operation. These forces can be effected on retaining walls and should be investigated and evaluated. Trying to investigate and analyze the dynamic behavior of different retaining walls is one of the most challenging for different researchers.

The wavelet theory in the dynamic analysis of the issues related to civil engineering is going to be widespread. This research aims to investigate the effect of using wavelet theory in the dynamic analyses of concrete retaining walls. For this purpose, a soil medium along with concrete retaining walls with different dimensions (heights) are considered. Dynamic analyses are performed based on the finite element method. In the first stage of modeling, the Sarpol-e Zahab earthquake record is filtered during four steps using the discrete wavelet theory. The numerical models are prepared and subjected to the available records. The percentage of the difference in the results of the analyses done with the records obtained from the different steps of filtering record with wavelet compared to the analyses done with the main record, along with the reduction of the time consumption, is evaluated. As expected, the best match of the post-filtering results to the main earthquake results is for the first-step filter. It can be seen that even the first step filter reduces the analysis time by about 60%. Based on the obtained results, the difference between the results obtained with the filtered records becomes less compared to the main earthquake with the increase in the height of the wall. It has also been observed that acceptable results are still obtained, and the analysis time is reduced by almost 80% until the third step filter.

It should be noted that the Mohr-Coulomb behavioral model is used in the conducted analyzes in this research. This behavioral model is not inherently able to model hysteresis damping behavior at low strains. Therefore, this issue can affect the results of deformations and stresses obtained from dynamic analysis. However, the purpose of this research is to evaluate the performance of the wavelet in the dynamic analysis of the retaining wall. Considering that in all the analyses (both the performed analysis with the main earthquake and the performed analyzes with the wavelet filtered records) the same structure and trend are used, it can be concluded that the effect of using the wavelet compared to the main earthquake gives an acceptable overview and quality

کلیدواژه‌ها English

Dynamic Analysis
Retaining Wall
Soil
Finite element
Wavelet theory
ABDUL-HUSSAIN, N., FALL, M. & SAATCIOGLU, M. 2023. Blast response of cantilever retaining wall: Modes of wall movement. Transportation Geotechnics, 40, 100950.
AGHAMOLAEI, M., SAEEDI AZIZKANDI, A., BAZIAR, M. H. & GHAVAMI, S. 2021. Performance-based analysis of cantilever retaining walls subjected to near-fault ground shakings. Computers and Geotechnics, 130, 103924.
DADKHAH, M., KAMGAR, R. & HEIDARZADEH, H. 2022. Reducing the Cost of Calculations for Incremental Dynamic Analysis of Building Structures Using the Discrete Wavelet Transform. Journal of Earthquake Engineering, 26, 3317-3342.
FAKHER, A. 2010. Principles of Advanced Foundation Engineering, Tehran, University of Tehran.
GUAN, X. & MADABHUSHI, G. S. P. 2022. Dynamic response of a retaining wall with a structure on the dry backfill. Soil Dynamics and Earthquake Engineering, 157, 107259.
HA, S. J., SEO, H. & KIM, B. 2023. Effects of pulse-like ground motions and wavelet asymmetry on responses of cantilever retaining wall. Soil Dynamics and Earthquake Engineering, 166, 107724.
HUNG, W.-Y., NOMLENI, I. A., SOEGIANTO, D. P. & PRAPTAWATI, A. 2023. Centrifuge modeling on the effect of mechanical connection on the dynamic performance of narrow geosynthetic reinforced soil wall. Geotextiles and Geomembranes.
JAVDANIAN, H. & GOUDARZI, N. 2023. Seismic Analysis of Geogrid-Reinforced Soil Retaining Walls Under Decomposed Earthquake Records. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47, 2365-2377.
KAMALZADEH, A. & PENDER, M. J. 2023. Dynamic response of Mechanically Stabilised Earth (MSE) structures: A numerical study. Geotextiles and Geomembranes, 51, 73-87.
KAMGAR, R., DADKHAH, M. & NADERPOUR, H. 2021a. Seismic response evaluation of structures using discrete wavelet transform through linear analysis. Structures, 29, 863-882.
KAMGAR, R., TAVAKOLI, R., RAHGOZAR, P. & JANKOWSKI, R. 2021b. Application of discrete wavelet transform in seismic nonlinear analysis of soil–structure interaction problems. Earthquake Spectra, 37, 1980 - 2012.
KANKANAMGE, Y., HU, Y. & SHAO, X. 2020. Application of wavelet transform in structural health monitoring. Earthquake Engineering and Engineering Vibration, 19, 515-532.
KHANAHMADI, M., REZAYFAR, O. & GHOLHAKI, M. 2021. Damage Detection in Steel Plates Based on Comparing Analytical Results of the Discrete 2-D Wavelet Transform of Primary and Secondary Modes Shape. Journal of Structural and Construction Engineering, 8, 198-214.
LIN, J., ZHOU, W., CUI, X. Z. & HONG, H. P. 2023. Application of wavelet transforms to the simulation of corrosion fields on buried pipelines. Computers & Structures, 276, 106957.
MAJIDI, N., HEIDARI, A., FATEHI, A. & HEIDARZADEH, H. 2022. Estimation of earthquake frequency content and its effect on dynamic analysis using continuous and discrete wavelet transform. Scientia Iranica, 29, 2773-2788.
MEMARIAN SORKHABI, O., KHAJEHZADEH, M. & KEAWSAWASVONG, S. 2023. Landslides monitoring with SBAS-InSAR and 3D wavelet phase filtering. Physics and Chemistry of the Earth, Parts A/B/C, 103486.
SALAJEGHEH, E. & HEIDARI, A. 2005a. Optimum design of structures against earthquake by wavelet neural network and filter banks. Earthquake Engineering & Structural Dynamics, 34, 67-82.
SALAJEGHEH, E. & HEIDARI, A. 2005b. Time history dynamic analysis of structures using filter banks and wavelet transforms. Computers & Structures, 83, 53-68.
SALAJEGHEH, E., HEIDARI, A. & SARYAZDI, S. 2005. Optimum design of structures against earthquake by discrete wavelet transform. International Journal for Numerical Methods in Engineering, 62, 2178-2192.
SARKAR, K., GUPTA, V. K. & GEORGE, R. C. 2016. Wavelet-based generation of spatially correlated accelerograms. Soil Dynamics and Earthquake Engineering, 87, 116-124.
SEGALINE, H., SÁEZ, E. & UBILLA, J. 2022. Evaluation of dynamic soil-structure interaction effects in buildings with underground stories using 1 g physical experimentation in a transparent shear laminar box. Engineering Structures, 266, 114645.
SINGH, P., BHARTIYA, P., CHAKRABORTY, T. & BASU, D. 2023. Numerical investigation and estimation of active earth thrust on gravity retaining walls under seismic excitation. Soil Dynamics and Earthquake Engineering, 167, 107798.
XU QIAN, Y. C., GUO HONG, GUO GUANGLING 2020. Stability alarming for a pile plate retaining wall with damage. China Safety Science Journal, 30, 47-53.