بهینه‌سازی توپولوژی و ابعاد سازه خرپایی بر مبنای روش چگالی مواد و الگوریتم مجانب‌های پویا

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد آیت الله آملی، آمل، ایران
2 دانشیار، گروه مهندسی سازه، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران
چکیده
در این مقاله روش مجانب های پویا MMA که یک روش برنامه‌ریزی ریاضی است برای حل مسئله بهینه سازی خرپا به کار گرفته شده است. اگرچه این روش در مسائل توپولوژی سازه‌های محیط پیوسته بسیار مورد استفاده قرار گرفته است، اما در مورد سازه‌های خرپایی کمتر مورد توجه بوده است. مسئله بهینه‌سازی مورد نظر در اینجا، مسئله حداقل سازی انرژی کرنشی سازه با در نظر گرفتن قید حجمی می‌باشد. برای اولین بار برای سازه خرپایی از مبانی روش SIMP و اعمال ضریب جریمه تابع چگالی برای بهینه سازی همزمان توپولوژی و ابعاد اعضای خرپا استفاده شده است. به منظور انجام بهینه‌سازی، تحلیل حساسیت تحلیلی انجام شده است. مسائل متنوعی در انتها حل شده‌اند و نتایج مورد بحث و بررسی قرار گرفته‌اند. نتایج نشان می‌دهند در صورت استفاده از ضریب جریمه مناسب، پاسخ بهینه درست برای مسائل معیار به دست می‌آید. همچنین برخی مسائل کاربردی‌تر نیز حل شده و نتایج مورد بحث قرار گرفته‌اند.

 

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Topology and size optimization of truss structures based on material density approach and MMA

نویسندگان English

Hossein Ghasemnejad Moghri 1
seyed Mehdi Tavakkoli 2
1 assistant professor, department of civil engineering, faculty of Engineering and technology, Ayatollah Amolli branch, Azad university, Amol, Iran
2 Associate Professor, Department of Structural Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده English

In this article, MMA which is a mathematical programing method is utilized for solving truss optimization problem. Although this method has been widely used in topology optimization problems of continuous structures, it has received less attention in the case of truss structures. The optimization problem considered here is the problem of minimizing the strain energy of the structure by considering the volume constraint. For the first time, the basics of the SIMP method and the application of the penalty exponent of the density function have been used for simultaneous optimization of topology and size of the truss members.To solve the optimization problem, analytical sensitivity analysis has been performed. Various problems have been solved at the end of the paper and the results have been discussed. The results show that if the appropriate penalty exponent is chosen, the correct optimal solution is obtained for the benchmark problems. Also, some more practical problems have been solved and the results have been discussed.

کلیدواژه‌ها English

Topology optimization
size optimization
truss
Sensitivity Analysis
SIMP
MMA
1. Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor
2. Eberhart, R. and Kennedy, J., 1995, October. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). Ieee.
3. Dorigo, M., Maniezzo, V. and Colorni, A., 1996. Ant system: optimization by a colony of cooperating agents. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 26(1), pp.29-41.
4. Geem, Z.W., Kim, J.H. and Loganathan, G.V., 2001. A new heuristic optimization algorithm: harmony search. simulation, 76(2), pp.60-68.
5. Kaveh, A. and Zolghadr, A., 2018. Meta-heuristic methods for optimization of truss structures with vibration frequency constraints. Acta Mechanica, 229, pp.3971-3992.
6. Rozvany, G.I.N. and Zhou, M., 1991. The COC algorithm, part I: cross-section optimization or sizing. Computer Methods in Applied Mechanics and Engineering, 89(1-3), pp.281-308.
7. George, I. and Rozvany, N., 1989. Structural Design Via Optimality Criteria: The Prager approach to Structural Optimization.
8. Schmit Jr, L.A. and Miura, H., 1976. Approximation concepts for efficient structural synthesis (No. NASA-CR-2552). NASA.
9. Vanderplaats, G.N. and Salajegheh, E., 1989. New approximation method for stress constraints in structural synthesis. AIAA journal, 27(3), pp.352-358.
10. Fleury, C., 1989. CONLIN: an efficient dual optimizer based on convex approximation concepts. Structural optimization, 1, pp.81-89.
11. Svanberg, K., 1987. The method of moving asymptotes—a new method for structural optimization. International journal for numerical methods in engineering, 24(2), pp.359-373.
12. Rozvany, G., 2000, June. The SIMP method in topology optimization-theoretical background, advantages and new applications. In 8th Symposium on Multidisciplinary Analysis and Optimization (p. 4738).
13. Bendsoe, M.P. and Sigmund, O., 2003. Topology optimization: theory, methods, and applications. Springer Science & Business Media
14. Hassani, B., Khanzadi, M. and Tavakkoli, S.M., 2012. An isogeometrical approach to structural topology optimization by optimality criteria. Structural and multidisciplinary optimization, 45, pp.223-233.
15. Tavakkoli, S.M., Hassani, B. and Ghasemnejad, H., 2013. Isogeometric topology optimization of structures by using MMA. Int J Optim Civil Eng, 3(2), pp.313-26.
16. Dorn, W.S., 1964. Automatic design of optimal structures. Journal de mecanique, 3, pp.25-52.
17. Jiang, Y., Zegard, T., Baker, W.F. and Paulino, G.H., 2018. Form-finding of grid-shells using the ground structure and potential energy methods: a comparative study and assessment. Structural and Multidisciplinary Optimization, 57, pp.1187-1211.
18. Sotiropoulos, S. and Lagaros, N.D., 2020. Topology optimization of framed structures using SAP2000. Procedia Manufacturing, 44, pp.68-75.
19. Miguel, L.F.F. and Miguel, L.F.F., 2012. Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Systems with Applications, 39(10), pp.9458-9467.
20. Kaveh, A. and Khayatazad, M., 2013. Ray optimization for size and shape optimization of truss structures. Computers & Structures, 117, pp.82-94.
21. Cao, H., Qian, X., Chen, Z. and Zhu, H., 2017. Enhanced particle swarm optimization for size and shape optimization of truss structures. Engineering Optimization, 49(11), pp.1939-1956.
22. Millan-Paramo, C. and Abdalla Filho, J.E., 2020. Size and shape optimization of truss structures with natural frequency constraints using modified simulated annealing algorithm. Arabian Journal for Science and Engineering, 45(5), pp.3511-3525.
23. Azizi, M., Aickelin, U., Khorshidi, H.A. and Shishehgarkhaneh, M.B., 2022. Shape and size optimization of truss structures by Chaos game optimization considering frequency constraints. Journal of Advanced Research, 41, pp.89-100.
24. Noii, N., Aghayan, I., Hajirasouliha, I. and Kunt, M.M., 2017. A new hybrid method for size and topology optimization of truss structures using modified ALGA and QPGA. Journal of Civil Engineering and Management, 23(2), pp.252-262.
25. Petersson, J. and Sigmund, O., 1998. Slope constrained topology optimization. International Journal for Numerical Methods in Engineering, 41(8), pp.1417-1434.
26. https://en.wikipedia.org/wiki/Forth_Bridge