بررسی پاسخ سیستم خاک-فونداسیون-سازه و تعیین فرکانس هدف بهینه در روش زیرسازه با درنظرگیری اثرات ناهمگنی خاک در عمق

نوع مقاله : پژوهشی اصیل (کامل)

نویسنده
استادیار گروه ژئوتکنیک، دانشکده فنی و مهندسی، دانشگاه هرمزگان
چکیده
فرکانس امواج زلزله متغیر بوده و مقدار سختی فنرها و میرایی میراگرهای متصل به تکیه­گاه­های سازه تابع فرکانس بارگذای است. برای حل مدل­های عددی در حوزه زمان در جهت رفع این مشکل، می­توان از یک فرکانس هدف جهت ثابت ماندن مقادیر سختی و میرایی استفاده نمود. در روش زیرسازه ارائه شده در پژوهش حاضر، فرکانس هدف بهینه آن فرکانسی است که نزدیک­ترین پاسخ­ها را نسبت به مدل سه بعدی غیرخطی صحت­سنجی شده در روش مستقیم ارائه می­دهد. این مطالعه یک مدل عددی سه­بعدی را برای تحلیل پاسخ لرزه­ای سیستم خاک-فونداسیون-سازه مدفون در خاک ماسه­ای (با دانسیته نسبی مختلف) با رفتار الاستیک ارائه می­کند. این مدل قادر است تأثیرات ناهمگنی خاک (تغییرات افزایشی پیوسته مدول برشی در عمق با استفاده از مدل توانی سازگار با مدل رفتاری HSsmall) را لحاظ کرده و با تعیین یک فرکانس هدف بهینه با روش پرکاربرد زیرسازه ادغام گردد. پس از صحت­سنجی مدل پیشنهادی، برای تعیین فرکانس هدف، پاسخ سازه (پل به عنوان مطالعه موردی) به ازای پنج فرکانس اصلی خاک (Case 1)، فرکانس اصلی سازه (Case 2)، فرکانس اصلی سیستم خاک-سازه (Case 3)، فرکانس اصلی سازه با تکیه­گاه فنری (Case 4) و فرکانس اصلی سیستم با پای صلب و سختی اصلاح شده (Case 5) با استفاده از نرم­افزار Matlab محاسبه و با یکدیگر مقایسه شدند. مقایسه امپدانس (سختی و میرایی دینامیکی) شالوده­های واقع بر خاک همگن و ناهمگن و همچنین بررسی پاسخ سازه در دو حالت مذکور از دیگر اهداف این تحقیق است. نتایج نشان داد که در تحلیل زیرسازه تحت زلزله­های سطح بهره­برداری، برای تعیین فرکانس هدف مناسب استفاده از Case 4 و Case 5 ضمن ارائه روشی کاربردی پاسخ­های واقع­بینانه­تری ارائه می­دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Examination of soil-foundation-structure system response and determination of the optimal target frequency in a substructure method considering soil inhomogeneity with depth

نویسنده English

Mohammad Shamsi
Assistant Professor, Department of Civil Engineering, University of Hormozgan
چکیده English

Despite the particular importance of the subject of soil-structure interaction, unfortunately, this issue has received little attention from engineers, and seismic codes have not given much recommendation to consider its effects. Seismic wave frequencies vary continuously, and the stiffness of springs and damping of dampers connected to structural supports also vary with the loading frequency. To simplify time-domain numerical analysis, a constant target frequency can be used to keep stiffness and damping values constant. In the substructure method proposed in this study, the optimal target frequency is the one that yields results that most closely match those of a more accurate nonlinear 3D model analyzed using a direct method. A common simplification is to ignore the foundation’s non-linear response, justified by design requirements to prevent permanent deformation and the complexity of frequency-dependent soil behavior. Though not fully precise, this approach (considering soil heterogeneity and optimal target frequency) offers a forward-looking analysis and a basis for future nonlinear studies. This study presents a three-dimensional (3D) numerical model for analyzing the seismic response of soil-foundation-structure systems embedded in granular soil (with different relative densities) considering the effects of soil heterogeneity (With varying shear modulus with depth and compatible with the practical HSsmall model). The model is capable of accounting for the effects of loading frequency along with the radiation damping of the soil system and can integrate with the widely-used substructuring method considering an optimal target frequency. After verifying the proposed model, the dynamic equilibrium equations of the substructuring system were solved in the time domain using Matlab software. The target frequency was determined using i) Case 1: the fundamental frequency of the soil (or the dominant frequency of the excitations), ii) Case 2: the fundamental frequency of the structural system, iii) Case 3: the fundamental frequency of the soil-foundation-structure system; iv) Case 4: the fundamental frequency of structure with static stiffness and damping support (Case 4); and v) the fundamental frequency of fixed base structure and modified stiffness, and the results were compared together. A comparison of the impedance (dynamic stiffness and damping) of foundations situated on homogeneous and heterogeneous soil, as well as an investigation of the structural response in both cases, is another objective of this research. The analysis results demonstrated the accuracy of the proposed model and the acceptable calculation speed for estimating the dynamic response of structures located on heterogeneous soils under frequent operational earthquakes. The results also showed that with an increase in soil relative density, the seismic behavior of structures on homogeneous and heterogeneous granular soils converges. For instance, the response of the foundation on homogeneous soil bed with relative densities of 55%, 75%, and 95% is on average 23%, 19%, and 15% lower than that of heterogeneous soil, respectively. Additionally, for determining the target frequency, the use of frequency‐independent Kelvin–Voigt models (i.e., Cases 1-5) provides acceptable responses. According to the data presented in Table 4 and Figs. 9 and 10, the following conclusions can be drawn: 1) The soil's fundamental frequency (Case 1) yielded the least precise results. 2) While Case 3 offered the most favorable response, closely matching the direct method, determining the soil-structure system's fundamental frequency through complex integration in numerical software is often impractical. 3) Employing the target frequency in Case 2 produced more satisfactory results than Case 1. 4) Cases 4 and 5 generated nearly identical frequencies. Compared to Case 2, these cases enhanced response accuracy, bringing them closer to the best response (i.e., Case 3). Therefore, for practical applications, it is recommended to utilize the fundamental frequency from either Case 4 or Case 5 instead of the soil-structure system's fundamental frequency (Case 3) to establish the optimal target frequency.

کلیدواژه‌ها English

Soil-Structure Interaction
Inhomogeneous Soil
Frequency-Dependent Dynamic Impedance
Dynamic Analysis
Substructuring Method
[1] Ghodrati Amiri G, Ganjavi B, Gholamrezatabar A. Evaluation of Drift Distribution in Steel Moment Frames Designed Based on Performance-Based Plastic design Approach Considering Soil-Structure Interaction Effects. Modares Civil Engineering Journal 2018;18:221–36.
[2] Shabani MJ, Shamsi M, Ghanbari A. Dynamic Response of Three-Dimensional Midrise Buildings Adjacent to Slope under Seismic Excitation in the Direction Perpendicular to the Slope. International Journal of Geomechanics 2021;21:04021204. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002158.
[3] Shabani MJ, Shamsi M, Zakerinejad M. Slope topographic impacts on the nonlinear seismic analysis of soil-foundation-structure interaction for similar MRF buildings. Soil Dynamics and Earthquake Engineering 2022;160:107365. https://doi.org/10.1016/j.soildyn.2022.107365.
[4] Shamsi M, Ghanbari A. Nonlinear dynamic analysis of Qom Monorail Bridge considering Soil-Pile-Bridge-Train Interaction. Transportation Geotechnics 2020;22:100309. https://doi.org/10.1016/j.trgeo.2019.100309.
[5] Rahman Shokrgozar H, Zare Aghblagh M, Khodaiee Ardabili AA. Comparison the effect of soil and shallow foundation types on the seismic performance of low-rise special steel moment frames considering soil – structure interaction. Modares Civil Engineering Journal 2018;18:121–30.
[6] Shamsi M, Shabani MJ, Vakili AH. Three-Dimensional Seismic Nonlinear Analysis of Topography–Structure–Soil–Structure Interaction for Buildings near Slopes. International Journal of Geomechanics 2022;22:04021295. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002301.
[7] Rahmani A, Taiebat M, Finn WL, Ventura CE. Evaluation of substructuring method for seismic soil-structure interaction analysis of bridges. Soil Dynamics and Earthquake Engineering 2016;90:112–27.
[8] Shirgir V, Ghanbari A, Massumi A. Soil-Pile-Structure Interaction Effects in Alluvium with Non-constant Shear Modulus in Depth. Transp Infrastruct Geotech 2021;8:254–78. https://doi.org/10.1007/s40515-020-00136-5.
[9] Shamsi M, Moshtagh E, Vakili AH. Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes. 1 2023;34:529–45.
[10] Medina C, Alamo GM, Padrón LA, Aznárez JJ, Maeso O. Application of regression models for the estimation of the flexible-base period of pile-supported structures in continuously inhomogeneous soils. Engineering Structures 2019;190:76–89.
[11] Amornfa K, Quang HT, Tuan TV. Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM. Geomech Eng 2023;32:387–96.
[12] Lee VW, Trifunac MD. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? Soil Dynamics and Earthquake Engineering 2010;30:1250–8.
[13] Shamsi M, Zakerinejad M, Vakili AH. Seismic analysis of soil-pile-bridge-train interaction for isolated monorail and railway bridges under coupled lateral-vertical ground motions. Engineering Structures 2021;248:113258. https://doi.org/10.1016/j.engstruct.2021.113258.
[14] Gazetas G. Foundation Vibrations. In: Fang H-Y, editor. Foundation Engineering Handbook, Boston, MA: Springer US; 1991, p. 553–93. https://doi.org/10.1007/978-1-4615-3928-5_15.
[15] Rovithis EN, Pitilakis KD, Mylonakis GE. A note on a pseudo-natural SSI frequency for coupled soil–pile–structure systems. Soil Dynamics and Earthquake Engineering 2011;31:873–8.
[16] Kampitsis AE, Sapountzakis EJ, Giannakos SK, Gerolymos NA. Seismic soil–pile–structure kinematic and inertial interaction—A new beam approach. Soil Dynamics and Earthquake Engineering 2013;55:211–24.
[17] Torabi H, Rayhani MT. Equivalent-linear pile head impedance functions using a hybrid method. Soil Dynamics and Earthquake Engineering 2017;101:137–52.
[18] Amendola C, de Silva F, Vratsikidis A, Pitilakis D, Anastasiadis A, Silvestri F. Foundation impedance functions from full-scale soil-structure interaction tests. Soil Dynamics and Earthquake Engineering 2021;141:106523. https://doi.org/10.1016/j.soildyn.2020.106523.
[19] Chen M, Li J, Li Z. An efficient numerical algorithm for solving the dynamic impedance function of arbitrary-shaped foundations in layered soil. Computers & Structures 2023;285:107085. https://doi.org/10.1016/j.compstruc.2023.107085.
[20] González F, Padrón LA, Carbonari S, Morici M, Aznárez JJ, Dezi F, et al. Seismic response of bridge piers on pile groups for different soil damping models and lumped parameter representations of the foundation. Earthq Engng Struct Dyn 2019;48:306–27. https://doi.org/10.1002/eqe.3137.
[21] Brinkgreve RBJ, Engin E, Engin HK. Validation of empirical formulas to derive model parameters for sands. Numerical Methods in Geotechnical Engineering 2010;137:142.
[22] Di Laora R, Rovithis E. Kinematic Bending of Fixed-Head Piles in Nonhomogeneous Soil. Journal of Geotechnical and Geoenvironmental Engineering 2015;141:04014126. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001270.
[23] Fiamingo A, Abate G, Chiaro G, Massimino MR. HS-Small Constitutive Model for Innovative Geomaterials: Effectiveness and Limits. International Journal of Geomechanics 2024;24:04024118. https://doi.org/10.1061/IJGNAI.GMENG-9308.
[24] Latini C, Zania V. Dynamic lateral response of suction caissons. Soil Dynamics and Earthquake Engineering 2017;100:59–71.
[25] Latini C, Zania V. Vertical dynamic impedance of suction caissons. Soils and Foundations 2019;59:1113–27.
[26] Trautmann CH, Kulhawy FH, Longo VJ. CUFAD: A Computer Program for Compression and Uplift Foundaton Analysis and Design. Foundation Engineering: Current Principles and Practices, ASCE; 1987, p. 691–705.
[27] Sbartai B. Dynamic Impedance Functions of a Square Foundation Estimated with an Equivalent Linear Approach. In: Rodrigues H, Elnashai A, Calvi GM, editors. Facing the Challenges in Structural Engineering, Cham: Springer International Publishing; 2018, p. 460–70. https://doi.org/10.1007/978-3-319-61914-9_35.
[28] Tileylioglu S, Stewart JP, Nigbor RL. Dynamic Stiffness and Damping of a Shallow Foundation from Forced Vibration of a Field Test Structure. J Geotech Geoenviron Eng 2011;137:344–53. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000430.
[29] Choi E, DesRoches R, Nielson B. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures 2004;26:187–99. https://doi.org/10.1016/j.engstruct.2003.09.006.
[30] He X, Kawatani M, Hayashikawa T, Matsumoto T. Numerical analysis on seismic response of Shinkansen bridge-train interaction system under moderate earthquakes. Earthq Eng Eng Vib 2011;10:85–97. https://doi.org/10.1007/s11803-011-0049-1.
[31] Miura K, Kaynia AM, Masuda K, Kitamura E, Seto Y. Dynamic behaviour of pile foundations in homogeneous and non‐homogeneous media. Earthq Engng Struct Dyn 1994;23:183–92. https://doi.org/10.1002/eqe.4290230206.
[32] Pitilakis D, Moderessi-Farahmand-Razavi A, Clouteau D. Equivalent-Linear Dynamic Impedance Functions of Surface Foundations. J Geotech Geoenviron Eng 2013;139:1130–9. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000829.
[33] Carbonari S, Dezi F, Gara F, Leoni G. Seismic response of reinforced concrete frames on monopile foundations. Soil Dynamics and Earthquake Engineering 2014;67:326–44.
[34] Carbonari S, Morici M, Dezi F, Leoni G. A lumped parameter model for time‐domain inertial soil‐structure interaction analysis of structures on pile foundations. Earthq Engng Struct Dyn 2018;47:2147–71. https://doi.org/10.1002/eqe.3060.
[35] Wolf J, editor. Dynamic Soil-Structure Interaction. Englewood Cliffs, New Jersey: Prentice Hall, Inc; 1985.
[36] Ke W, Liu Q, Zhang C. Kinematic bending of single piles in layered soil. Acta Geotech 2019;14:101–10. https://doi.org/10.1007/s11440-018-0640-y.
[37] Torshizi MF, Saitoh M, Álamo GM, Goit CS, Padrón LA. Influence of pile radius on the pile head kinematic bending strains of end-bearing pile groups. Soil Dynamics and Earthquake Engineering 2018;105:184–203.
[38] Saitoh M. On the performance of lumped parameter models with gyro‐mass elements for the impedance function of a pile‐group supporting a single‐degree‐of‐freedom system. Earthq Engng Struct Dyn 2012;41:623–41. https://doi.org/10.1002/eqe.1147.
[39] González F, Carbonari S, Padrón LA, Morici M, Aznárez JJ, Dezi F, et al. Benefits of inclined pile foundations in earthquake resistant design of bridges. Engineering Structures 2020;203:109873.
[40] Veletsos AS. Dynamics of structure-foundation systems. Structural and Geotechnical Mechanics 1977:333–61.
[41] Shamsi M, Shabani MJ, Zakerinejad M, Vakili AH. Slope topographic effects on the nonlinear seismic behavior of groups of similar buildings. Earthq Engng Struct Dyn 2022;51:2292–314. https://doi.org/10.1002/eqe.3664.