ارزیابی آزمایشگاهی و عددی اتصال خمشی نوین مرکزگرا با میراگر جاری‌شونده فولادی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده مهندسی عمران دانشگاه سمنان
2 استادیار دانشکده مهندسی عمران دانشگاه سمنان
3 دانشیار دانشکده مهندسی عمران دانشگاه سمنان
چکیده
اگر چه سیستم­های متعارف مقاوم در برابر زلزله مثل قاب خمشی و قاب مهاربندی شده الزامات لازم جهت امن بودن یک سازه را به هنگام وقوع زلزله برطرف می‌سازند، ولی این سیستم­ها تضمینی در برابر جلوگیری از خسارات وارده به سازه پس از وقوع زلزله را ایجاد نمی‌کنند. به طوری که گاه تعمیر و مرمت برخی از سازه­ها به دلیل وارد آمدن این خسارات جدی غیر اقتصادی به نظر می‌رسد. پس ایجاد سیستمی که بتواند سازه را پس از اعمال بارهای جانبی و مخصوصاً بار زلزله به حالت اولیه خود بازگرداند و کمترین خسارت را در پی داشته باشد ضروری به نظر می‌رسد. سیستم‌های لرزه‌ای مرکزگرا عناصری هستند که دارای قابلیت حداقل کردن جابجایی نسبی پسماند در حین تحمل زلزله­های با شدت بزرگ می­باشند. در این تحقیق هدف ارائه یک اتصال خمشی مرکزگرا با سیستم جاذب انرژی کاربردی است. این سیستم علاوه بر قابلیت بهبود و بالا بردن عملکرد لرزه­ای ساختمان­ها در برابر زلزله­های سطح طراحی؛ ویژگی سادگی و قابلیت اجرا به صورت اقتصادی را نیز دارد. همچنین در معرفی این اتصال قابلیت تعویض‌پذیری ساده بعد از زلزله نیز پیش‌بینی شده است. برای نیل به این هدف برنامه آزمایشگاهی بزرگ مقیاسی از مدل­های تحلیل و طراحی شده به روش اجزا محدود طرح‌ریزی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Evaluation of Self-centering Moment -Resisting Frame with Metallic Damper

نویسندگان English

ali nazeri givi 1
reza vahdani 2
Mohammad Ali Kafi 3
1 Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Assistant Professor
3 Associate Professor
چکیده English

Although conventional earthquake-resistant systems such as moment frames and braced frames meet the requirements for the safety of a structure when an earthquake occurs, these systems have not guaranteed the prevention of damage to the structure after an earthquake occurs. So that sometimes the repair of some structures seems uneconomic due to these serious damages. Repairing the damage caused by the earthquake was expensive and caused business interruption. A highly effective solution in the new generation of seismic resistance is self-centering systems that eliminate and limit residual drift. The self-centering system's key features affected how the system behaves during earthquakes. The first crucial feature is the amount of post-tensioning (PT) force, which is often used for the standing position after the earthquake. Another one that is played the important role in the behavior of the self-centering system is the energy dissipater element. Employing the damper as a replaceable and cost-effective tool and fuse in self-centering frames to improve energy absorption and damping of structural systems under earthquakes has been considered. A system that can restore the structure to its original state after applying earthquake loads is necessary to minimize damage. Self-centering systems are elements that have the ability to minimize the residual drifts while enduring earthquakes of great intensity.

In this study, flexural damper as an energy dissipator system is employed in the self-centering steel moment frame connections to improve energy absorption, post yielding stiffness, and is easily replaceable after the earthquake. Moreover, providing the sufficient stiffness, strength, and ductility, while reducing permanent deformations in the self-centering steel moment frames subjected to seismic loading have been deliberated. In this paper, after validating the results from the FE model with the prior experimental PT connection, the behavior of the self-centering connection with the flexural damper has been analyzed. In the FE modeling, the geometric and material nonlinearities and preloading strands are contemplated in the modeling. Gap opening and closing action beside contact and sliding phenomena are involved in the models. To achieve this goal, a large-scale experimental test program of analyzed and designed models using the finite element method has been planned. Changing the height of the beam has a great effect on the performance of the moment capacity of self-centering connection. This issue has been tested much less in the experiments and researches carried out until today, but the numerical studies have confirmed this issue. In this research, the change in beam height has been evaluated as one of the main factors in the experiments. According to the test results, the beam and column remained in the elastic range. Also the damage is accumulated in the damper. Flexural dampers can enhance the post-yield stiffness and energy absorption of SF-MRF frames, while maintaining minimal permanent deformation at particular damper thicknesses. The obtained results show that in addition to reducing the residual drift to less than 0.5%, the effective energy the dissipation ratio, β, is also improved to 0.25%. Also, this improvement in the seismic performance of self-centering connection with the flexural damper has been achieved with an acceptable ratio of the moment capacity to the beam plastic moment capacity.

کلیدواژه‌ها English

Self-centering moment resistance
experimental program
Finite element
metallic damper
1- R. Bruneau, Michel; Uang, Chia-Ming; Sabelli, Ductile Design of Steel Structures 2nd Edition. 2011.
2- C. Christopoulos, A. Filiatrault, C.-M. Uang, and B. Folz, “Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames,” J. Struct. Eng., vol. 128, pp. 1111–1120, 2002, doi: 10.1061/ASCE0733-94452002128:91111.
3- B. D. and G. J. Youssef NF, “A survey of steel moment-resisting frame buildings affected by the 1994 Northridge earthquake,” US Natl. Inst. Stand. Technol., 1995.
4- FEMA (2000), “Federal Emergency Management Agency (FEMA). (2000) Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings: Federal Emergency Management Agency, Washington, D.C. - Google Search.”
5- B. Christopoulos, C.; Filiatrault, A.; Uang, C.M.; Folz, “Posttensioned energy dissipating connections for moment-resisting steel frames.,” J. Struct. Eng., vol. 128, pp. 1111-1120., 2002.
6- M. D. Engelhardt and T. A. Sabol, “Reinforcing of steel moment connections with cover plates: Benefits and limitations,” Eng. Struct., vol. 20, no. 4–6, pp. 510–520, 1998, doi: 10.1016/S0141-0296(97)00038-2.
7- J. McCormick, H. Aburano, M. Ikenaga, and M. Nakashima, “Permissible residual deformation levels for building structures considering both safety and human elements,” in Proceedings of the 14th world conference on earthquake engineering, 2008, pp. 12–17.
8- K. C. Tsai, C. C. Chou, C. L. Lin, P. C. Chen, and S. J. Jhang, “Seismic self-centering steel beam-to-column moment connections using bolted friction devices,” Earthq. Eng. Struct. Dyn., vol. 37, no. 4, pp. 627–645, Apr. 2008, doi: 10.1002/EQE.779.
9- M. Garlock, J. M. Ricles, R. Sause, S.-W. Peng, C. Zhao, and L.-W. Lu, “Post Tensioned Seismic Resistant Connections for Steel Frames,” 1998.
10- M. Heidari, A. A. Aghakouchak, “Introduction and Investigation of a New Steel Brace with Self- Centering and Energy Dissipating Capabilities,” Modares Civil Engineering Journal (M.C.E.J), vol. 19, no. 1, Apr. 2018, (In Persian).
11- M. S. Daliri, H. Yousefpour, H. Khosravi, “Seismic Behavior of Precast Self-Centering Bridge Piers,” Modares Civil Engineering Journal (M.C.E.J), vol. 23, no. 2, Apr. 2023, (In Persian).
12- M. J. Ebrahimi Majumerd, E. Mohammadi Dehcheshmaeh, V. Broujerdian, “Feasibility study of using endurance time method for seismic evaluation of self-centering buckling restrained braced frame (SC-BRC-BF),” Modares Civil Engineering Journal (M.C.E.J), vol. 22, no. 2, Apr. 2022, (In Persian).
12- K. C. Tsai, C. C. Chou, C. L. Lin, P. C. Chen, and S. J. Jhang, “Seismic self-centering steel beam-to-column moment connections using bolted friction devices,” Earthq. Eng. Struct. Dyn., vol. 37, no. 4, pp. 627–645, Apr. 2008, doi: 10.1002/EQE.779.
13- H.-J. Kim and C. Christopoulos, “Friction Damped Posttensioned Self-Centering Steel Moment-Resisting Frames,” J. Struct. Eng., vol. 134, no. 11, pp. 1768–1779, Nov. 2008, doi: 10.1061/(ASCE)0733-9445(2008)134:11(1768).
14- M. Wolski, A. M. Asce, J. M. Ricles, M. Asce, R. Sause, and M. Asce, “Experimental Study of a Self-Centering Beam – Column Connection with Bottom Flange Friction Device,” J. Struct. Eng., vol. 135, no. May, pp. 479–488, 2009.
15- J. Iyama, C. Y. Seo, J. M. Ricles, and R. Sause, “Self-centering MRFs with bottom flange friction devices under earthquake loading,” J. Constr. Steel Res., vol. 65, no. 2, pp. 314–325, 2009, doi: 10.1016/j.jcsr.2008.02.018.
16- D. J. Miller, L. A. Fahnestock, and M. R. Eatherton, “Development and experimental validation of a nickel–titanium shape memory alloy self-centering buckling-restrained brace,” Eng. Struct., vol. 40, pp. 288–298, Jul. 2012, doi: 10.1016/J.ENGSTRUCT.2012.02.037.
17- J. M. R. & N. G. D. Roke, R. Sause, “Damage-free seismic-resistant self-centering steel concentrically-braced frames,” Behav. Steel Struct. Seism. Areas, pp. 21–28, Dec. 2009, doi: 10.1201/9780203861592-2.
18- G. Vasdravellis, T. L. Karavasilis, and B. Uy, “Finite element models and cyclic behavior of self-centering steel post-tensioned connections with web hourglass pins,” Eng. Struct., vol. 52, pp. 1–16, Jul. 2013, doi: 10.1016/J.ENGSTRUCT.2013.02.005.
19- C. Christopoulos, S. Pampanin, and M. J. Nigel Priestley, “Performance-based seismic response of frame strucctures including residual deformations. Part I: Single-degree of freedom systems,” J. Earthq. Eng., vol. 7, no. 1, pp. 97–118, 2003, doi: 10.1080/13632460309350443.
20- J. M. Ricles, R. Sause, S. W. Peng, and L. W. Lu, “Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections,” J. Struct. Eng., vol. 128, no. July, pp. 850–859, 2002.
21- G. Vasdravellis, T. L. Karavasilis, and B. Uy, “Finite element models and cyclic behavior of self-centering steel post-tensioned connections with web hourglass pins,” Eng. Struct., vol. 52, pp. 1–16, Jul. 2013, doi: 10.1016/j.engstruct.2013.02.005.
22- C. Christopoulos, A. Filiatrault, C.-M. Uang, and B. Folz, “Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames,” J. Struct. Eng., vol. 128, no. 9, pp. 1111–1120, Sep. 2002.
23- J. M. Ricles, R. Sause, M. M. Garlock, and C. Zhao, “Posttensioned Seismic-Resistant Connections for Steel Frames,” J. Struct. Eng., vol. 127, no. 2, pp. 113–121, Feb. 2001, doi: 10.1061/(ASCE)0733-9445(2001)127:2(113).
24- J. M. Ricles, R. Sause, S. W. Peng, and L. W. Lu, “Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections,” J. Struct. Eng., vol. 128, no. 7, pp. 850–859, Jul. 2002, doi: 10.1061/(ASCE)0733-9445(2002)128:7(850).
25- M. M. Garlock, J. M. Ricles, and R. Sause, “Experimental Studies of Full-Scale Posttensioned Steel Connections,” J. Struct. Eng., vol. 131, no. 3, pp. 438–448, Mar. 2005, doi: 10.1061/(ASCE)0733-9445(2005)131:3(438).
26- M. M. Garlock, J. M. Ricles, and R. Sause, “Cyclic Load Tests and Analysis of Bolted Top-and-Seat Angle Connections,” J. Struct. Eng., vol. 129, no. 12, pp. 1615–1625, Dec. 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:12(1615).
27- A. Javanmardi, Z. Ibrahim, K. Ghaedi, H. Benisi Ghadim, and M. U. Hanif, “State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation,” Arch. Comput. Methods Eng., vol. 27, no. 2, pp. 455–478, 2020, doi: 10.1007/s11831-019-09329-9.
28- C. Zhang, Y. Zhou, D. G. Weng, D. H. Lu, and C. X. Wu, “A methodology for design of metallic dampers in retrofit of earthquake-damaged frame,” Struct. Eng. Mech., vol. 56, no. 4, pp. 569–588, Nov. 2015, doi: 10.12989/SEM.2015.56.4.569.
29- B. Qu, C. Dai, J. Qiu, H. Hou, and C. Qiu, “Testing of seismic dampers with replaceable U-shaped steel plates,” Eng. Struct., vol. 179, no. August 2018, pp. 625–639, 2019, doi: 10.1016/j.engstruct.2018.11.016.
30- M. Ebadi Jamkhaneh, A. H. Ebrahimi, and M. Shokri Amiri, “Experimental and Numerical Investigation of Steel Moment Resisting Frame with U-Shaped Metallic Yielding Damper,” Int. J. Steel Struct., vol. 19, no. 3, pp. 806–818, 2019, doi: 10.1007/s13296-018-0166-z.
31- H. Özkaynak, “Model Proposal for Steel Cushions for Use in Reinforced Concrete Frames,” KSCE J. Civ. Eng., pp. 1–11, 2017, doi: 10.1007/s12205-017-0477-1.
32- A. Iqbal, S. Pampanin, A. Palermo, and A. H. Buchanan, “Performance and design of LVL walls coupled with UFP dissipaters,” J. Earthq. Eng., vol. 19, no. 3, pp. 383–409, Apr. 2015, doi: 10.1080/13632469.2014.987406.
33- F. K. Ahmet GÜLLÜ, Hasan ÖZKAYNAK, Arastoo KHAJEHDEHI, Tansu GÖKÇE, Faraz AZİZİSALES, İ. Engin BAL, Eleni SMYROU, Ercan YÜKSEL, “Derivation of the Closed Form Equations For the Energy Dissipative Steel Cushions,” 14th World Conf. Seism. Isol. Energy Dissipation Act. Vib. Control Struct. Sept. 9-11 2015 San Diego, Ca USA, no. September, pp. 1–10, 2015.
34- K. Deng, P. Pan, and C. Wang, “Development of crawler steel damper for bridges,” JCSR, vol. 85, pp. 140–150, 2013, doi: 10.1016/j.jcsr.2013.03.009.
35- G. A. MACRAE and K. KAWASHIMA, “POST-EARTHQUAKE RESIDUAL DISPLACEMENTS OF BILINEAR OSCILLATORS. Earthquake Engineering & Structural Dynamics, 26(7), 701–716