1- R. Bruneau, Michel; Uang, Chia-Ming; Sabelli, Ductile Design of Steel Structures 2nd Edition. 2011.
2- C. Christopoulos, A. Filiatrault, C.-M. Uang, and B. Folz, “Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames,” J. Struct. Eng., vol. 128, pp. 1111–1120, 2002, doi: 10.1061/ASCE0733-94452002128:91111.
3- B. D. and G. J. Youssef NF, “A survey of steel moment-resisting frame buildings affected by the 1994 Northridge earthquake,” US Natl. Inst. Stand. Technol., 1995.
4- FEMA (2000), “Federal Emergency Management Agency (FEMA). (2000) Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings: Federal Emergency Management Agency, Washington, D.C. - Google Search.”
5- B. Christopoulos, C.; Filiatrault, A.; Uang, C.M.; Folz, “Posttensioned energy dissipating connections for moment-resisting steel frames.,” J. Struct. Eng., vol. 128, pp. 1111-1120., 2002.
6- M. D. Engelhardt and T. A. Sabol, “Reinforcing of steel moment connections with cover plates: Benefits and limitations,” Eng. Struct., vol. 20, no. 4–6, pp. 510–520, 1998, doi: 10.1016/S0141-0296(97)00038-2.
7- J. McCormick, H. Aburano, M. Ikenaga, and M. Nakashima, “Permissible residual deformation levels for building structures considering both safety and human elements,” in Proceedings of the 14th world conference on earthquake engineering, 2008, pp. 12–17.
8- K. C. Tsai, C. C. Chou, C. L. Lin, P. C. Chen, and S. J. Jhang, “Seismic self-centering steel beam-to-column moment connections using bolted friction devices,” Earthq. Eng. Struct. Dyn., vol. 37, no. 4, pp. 627–645, Apr. 2008, doi: 10.1002/EQE.779.
9- M. Garlock, J. M. Ricles, R. Sause, S.-W. Peng, C. Zhao, and L.-W. Lu, “Post Tensioned Seismic Resistant Connections for Steel Frames,” 1998.
10- M. Heidari, A. A. Aghakouchak, “Introduction and Investigation of a New Steel Brace with Self- Centering and Energy Dissipating Capabilities,” Modares Civil Engineering Journal (M.C.E.J), vol. 19, no. 1, Apr. 2018, (In Persian).
11- M. S. Daliri, H. Yousefpour, H. Khosravi, “Seismic Behavior of Precast Self-Centering Bridge Piers,” Modares Civil Engineering Journal (M.C.E.J), vol. 23, no. 2, Apr. 2023, (In Persian).
12- M. J. Ebrahimi Majumerd, E. Mohammadi Dehcheshmaeh, V. Broujerdian, “Feasibility study of using endurance time method for seismic evaluation of self-centering buckling restrained braced frame (SC-BRC-BF),” Modares Civil Engineering Journal (M.C.E.J), vol. 22, no. 2, Apr. 2022, (In Persian).
12- K. C. Tsai, C. C. Chou, C. L. Lin, P. C. Chen, and S. J. Jhang, “Seismic self-centering steel beam-to-column moment connections using bolted friction devices,” Earthq. Eng. Struct. Dyn., vol. 37, no. 4, pp. 627–645, Apr. 2008, doi: 10.1002/EQE.779.
13- H.-J. Kim and C. Christopoulos, “Friction Damped Posttensioned Self-Centering Steel Moment-Resisting Frames,” J. Struct. Eng., vol. 134, no. 11, pp. 1768–1779, Nov. 2008, doi: 10.1061/(ASCE)0733-9445(2008)134:11(1768).
14- M. Wolski, A. M. Asce, J. M. Ricles, M. Asce, R. Sause, and M. Asce, “Experimental Study of a Self-Centering Beam – Column Connection with Bottom Flange Friction Device,” J. Struct. Eng., vol. 135, no. May, pp. 479–488, 2009.
15- J. Iyama, C. Y. Seo, J. M. Ricles, and R. Sause, “Self-centering MRFs with bottom flange friction devices under earthquake loading,” J. Constr. Steel Res., vol. 65, no. 2, pp. 314–325, 2009, doi: 10.1016/j.jcsr.2008.02.018.
16- D. J. Miller, L. A. Fahnestock, and M. R. Eatherton, “Development and experimental validation of a nickel–titanium shape memory alloy self-centering buckling-restrained brace,” Eng. Struct., vol. 40, pp. 288–298, Jul. 2012, doi: 10.1016/J.ENGSTRUCT.2012.02.037.
17- J. M. R. & N. G. D. Roke, R. Sause, “Damage-free seismic-resistant self-centering steel concentrically-braced frames,” Behav. Steel Struct. Seism. Areas, pp. 21–28, Dec. 2009, doi: 10.1201/9780203861592-2.
18- G. Vasdravellis, T. L. Karavasilis, and B. Uy, “Finite element models and cyclic behavior of self-centering steel post-tensioned connections with web hourglass pins,” Eng. Struct., vol. 52, pp. 1–16, Jul. 2013, doi: 10.1016/J.ENGSTRUCT.2013.02.005.
19- C. Christopoulos, S. Pampanin, and M. J. Nigel Priestley, “Performance-based seismic response of frame strucctures including residual deformations. Part I: Single-degree of freedom systems,” J. Earthq. Eng., vol. 7, no. 1, pp. 97–118, 2003, doi: 10.1080/13632460309350443.
20- J. M. Ricles, R. Sause, S. W. Peng, and L. W. Lu, “Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections,” J. Struct. Eng., vol. 128, no. July, pp. 850–859, 2002.
21- G. Vasdravellis, T. L. Karavasilis, and B. Uy, “Finite element models and cyclic behavior of self-centering steel post-tensioned connections with web hourglass pins,” Eng. Struct., vol. 52, pp. 1–16, Jul. 2013, doi: 10.1016/j.engstruct.2013.02.005.
22- C. Christopoulos, A. Filiatrault, C.-M. Uang, and B. Folz, “Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames,” J. Struct. Eng., vol. 128, no. 9, pp. 1111–1120, Sep. 2002.
23- J. M. Ricles, R. Sause, M. M. Garlock, and C. Zhao, “Posttensioned Seismic-Resistant Connections for Steel Frames,” J. Struct. Eng., vol. 127, no. 2, pp. 113–121, Feb. 2001, doi: 10.1061/(ASCE)0733-9445(2001)127:2(113).
24- J. M. Ricles, R. Sause, S. W. Peng, and L. W. Lu, “Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections,” J. Struct. Eng., vol. 128, no. 7, pp. 850–859, Jul. 2002, doi: 10.1061/(ASCE)0733-9445(2002)128:7(850).
25- M. M. Garlock, J. M. Ricles, and R. Sause, “Experimental Studies of Full-Scale Posttensioned Steel Connections,” J. Struct. Eng., vol. 131, no. 3, pp. 438–448, Mar. 2005, doi: 10.1061/(ASCE)0733-9445(2005)131:3(438).
26- M. M. Garlock, J. M. Ricles, and R. Sause, “Cyclic Load Tests and Analysis of Bolted Top-and-Seat Angle Connections,” J. Struct. Eng., vol. 129, no. 12, pp. 1615–1625, Dec. 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:12(1615).
27- A. Javanmardi, Z. Ibrahim, K. Ghaedi, H. Benisi Ghadim, and M. U. Hanif, “State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation,” Arch. Comput. Methods Eng., vol. 27, no. 2, pp. 455–478, 2020, doi: 10.1007/s11831-019-09329-9.
28- C. Zhang, Y. Zhou, D. G. Weng, D. H. Lu, and C. X. Wu, “A methodology for design of metallic dampers in retrofit of earthquake-damaged frame,” Struct. Eng. Mech., vol. 56, no. 4, pp. 569–588, Nov. 2015, doi: 10.12989/SEM.2015.56.4.569.
29- B. Qu, C. Dai, J. Qiu, H. Hou, and C. Qiu, “Testing of seismic dampers with replaceable U-shaped steel plates,” Eng. Struct., vol. 179, no. August 2018, pp. 625–639, 2019, doi: 10.1016/j.engstruct.2018.11.016.
30- M. Ebadi Jamkhaneh, A. H. Ebrahimi, and M. Shokri Amiri, “Experimental and Numerical Investigation of Steel Moment Resisting Frame with U-Shaped Metallic Yielding Damper,” Int. J. Steel Struct., vol. 19, no. 3, pp. 806–818, 2019, doi: 10.1007/s13296-018-0166-z.
31- H. Özkaynak, “Model Proposal for Steel Cushions for Use in Reinforced Concrete Frames,” KSCE J. Civ. Eng., pp. 1–11, 2017, doi: 10.1007/s12205-017-0477-1.
32- A. Iqbal, S. Pampanin, A. Palermo, and A. H. Buchanan, “Performance and design of LVL walls coupled with UFP dissipaters,” J. Earthq. Eng., vol. 19, no. 3, pp. 383–409, Apr. 2015, doi: 10.1080/13632469.2014.987406.
33- F. K. Ahmet GÜLLÜ, Hasan ÖZKAYNAK, Arastoo KHAJEHDEHI, Tansu GÖKÇE, Faraz AZİZİSALES, İ. Engin BAL, Eleni SMYROU, Ercan YÜKSEL, “Derivation of the Closed Form Equations For the Energy Dissipative Steel Cushions,” 14th World Conf. Seism. Isol. Energy Dissipation Act. Vib. Control Struct. Sept. 9-11 2015 San Diego, Ca USA, no. September, pp. 1–10, 2015.
34- K. Deng, P. Pan, and C. Wang, “Development of crawler steel damper for bridges,” JCSR, vol. 85, pp. 140–150, 2013, doi: 10.1016/j.jcsr.2013.03.009.
35- G. A. MACRAE and K. KAWASHIMA, “POST-EARTHQUAKE RESIDUAL DISPLACEMENTS OF BILINEAR OSCILLATORS. Earthquake Engineering & Structural Dynamics, 26(7), 701–716