مطالعه آزمایشگاهی رفتار چرخه‌ای اتصال در قاب‌های بتنی نیمه پیش ساخته با وصله مکانیکی و آرماتور با مقاومت بالا

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده مهندسی عمران، دانشگاه سمنان
2 دانشجوی دکتری مهندسی عمران، دانشگاه سمنان
چکیده
چهار نمونه آزمایشگاهی از اتصال میانی تیر به ستون در قاب خمشی بتن‌آرمه ساخته شده است. دو تفاوت اصلی بین نمونه‌ها در مرحله ساخت شامل رده مقاومتی آرماتورها و نیمه پیش‌ساختگی اتصال یا یکپارچگی اتصال است. دو نمونه اتصال مبنا به‌صورت یکپارچه ساخته شده است و دو نمونه اتصال دیگر به‌صورت نیمه پیش‌ساخته تولید شده‌اند. طرح‌ریزی اتصالات نیمه پیش‌ساخته به نحوی انجام شده که وصله مکانیکی مورداستفاده قرار گرفته است و به جوشکاری در محل پروژه نیاز ندارد. آزمایش تعیین مقاومت فشاری بتن و همچنین آزمایش تعیین مقاومت کششی آرماتورهای مصرفی انجام شده است. پس از ساخت و عمل‌آوری نمونه‌ها، بارگذاری چرخه‌ای طبق ACI T1.1R-01 اعمال شده است. سپس با استفاده از نتایج آزمایشگاهی، پارامترهای مقاومت تسلیم، مقاومت نهایی، شکل‌پذیری تغییر مکانی و انرژی جذب شده در نمونه‌ها تعیین شده و موردمطالعه قرار گرفته است. در محدوده پارامترهای متغیر و مصالح بکار رفته در این پژوهش نتیجه‌گیری شده است که استفاده از آرماتور با رده مقاومت بالاتر موجب افزایش مقاومت تسلیم و مقاومت نهایی نمونه‌ها شده است به‌نحوی‌که مقدار این افزایش مقاومت در نمونه اتصالات یکپارچه 8 درصد افزایش و در اتصالات نیمه پیش‌ساخته 32 درصد افزایش یافته است. افزایش مقاومت آرماتورها موجب کاهش 36 درصدی شکل‌پذیری اتصالات یکپارچه شده است. همچنین افزایش رده مقاومت آرماتورها موجب شده است تا انرژی جذب شده در اتصالات یکپارچه 18 درصد کاهش و در اتصالات نیمه پیش‌ساخته 15 درصد کاهش پیدا کند. در اتصالات نیمه پیش‌ساخته، مقاومت تسلیم و مقاومت نهایی کوچک‌تر از اتصالات یکپارچه است. زمانی که از آرماتور رده S400 در ساخت نمونه اتصالات استفاده شود، مقاومت تسلیم و مقاومت نهایی نمونه نیمه پیش‌ساخته 23 درصد کوچک‌تر و نسبت شکل‌پذیری 28 درصد کوچک‌تر از نمونه اتصال یکپارچه است. انرژی جذب شده در اتصالات نیمه پیش‌ساخته 28 درصد کوچک‌تر از انرژی جذب شده در اتصالات یکپارچه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental study of the Cyclic behavior of semi-precast connection in concrete frames with coupler and high strength reinforcement

نویسندگان English

Reza Vahdani 1
Ali Kheyroddin 1
Mojtaba Heravi 2
1 Assistant Professor, Faculty of Civil Engineering, Semnan University
2 PhD student in civil engineering, Semnan University
چکیده English

The four experimental samples of middle beam-column connection of the reinforced concrete moment resisting frame were made. In the stage of making the experimental specimens, the two main differences between the specimens were included the strength category of reinforcement and the semi-precast of connection. The two monolithic specimens (MO1 & MO2) were made using in-situ and continuous concreting in such a way that the reinforcement and concreting of the beam and column and the connection core were all done in one step; Two other specimens are semi-precast connection (SPC1 & SPC2). The semi-precast connection is built in such a way that coupler is used and does not require welding on the project site. In one of the monolithic specimens (MO1) is used S400 grade reinforcement, and in the other monolithic specimen (MO2) is used S500 grade reinforcement. In one of the semi-precast specimens (SPC1) are used S400 grade reinforcement, and in the other semi-precast specimen (SPC2) is used S500 grade reinforcement. In all of the four specimens, the cross-section of the column is square with dimensions of 30 cm; and the cross-section beams in all specimens is rectangular with a width of 30 cm and a height of 35 cm. In all specimens, 8 reinforcements with a diameter of 16 mm with uniform distribution in the column section are used for the longitudinal reinforcement of the column; The longitudinal reinforcement of the beams includes 4 reinforcements with a diameter of 16 mm at the bottom of beam and also 4 reinforcements with a diameter of 16 mm at the top of beam; reinforcements with a diameter of 10 mm have used for shear reinforcement in beams and columns; The shear reinforcements of column continue in the connection core. In the monolithic specimens, the bottom longitudinal reinforcements of the beam have continuously passed through the beam-column connection core, while in the two semi-precast specimens, the bottom longitudinal reinforcements of the beam have coupler in the connection core. Tests to determine the compressive strength of used concrete as well as tests to determine the tensile strength of used reinforcements have been done. After making and curing of specimens, cyclic load was applied according to ACI T1.1R-01; then parameters such as yield strength, ultimate strength, ductility and absorbed energy have been studied. In the range of variable parameters and materials used in this research, it is concluded that increasing in the strength of reinforcements has resulted in increasing the yield strength and ultimate strength of specimens; In such a way that the strength of monolithic specimens is increased by +8% and the strength of semi-precast specimens are increased by +32%. Increasing the strength of reinforcements has reduced the ductility of monolithic specimens by -36%. Increasing strength of reinforcements has resulted in decreasing the absorbed energy -18% of monolithic specimens and -15% of semi-precast specimens. The yield strength and ultimate strength of semi-precast specimens are smaller than monolithic specimens. When the S400 reinforcement is used on the specimens, the yield strength and ultimate strength of the semi-precast specimen is 23% smaller than and the ductility ratio is 28% smaller than the monolithic specimen. The energy absorbed in the semi-precast specimen is 28% smaller than it in monolithic specimen.

کلیدواژه‌ها English

Yield strength &
ultimate strength
Ductility ratio
Absorbed energy
Middle connection of frame
Cyclic load
[1] Alcocer S. M., Carranza R., Perez-Navarrete D. & Martinenz R. 2002 Seismic tests of beam-to-column connections in a precast concrete frame. PCI Journal, 47(3), 70-89.
[2] Guerrero H., Rodriguez V., Escobar A., Alcocer S. M., Bennetts F. & Suarez M. 2019 Experimental tests of precast reinforced concrete beam-column connections. Soil Dynamics and Earthquake Engineering, 125, 105743.
[3] Khaloo A. R. & Parastesh H. 2003 Cyclic loading of ductile precast concrete beam-column connection. ACI Structural Journal, 100(3), 291-296.
[4] Khaloo A. R. & Parastesh H. 2003 Cyclic loading Response of Simple Moment-Resisting Precast concrete beam-column connection. ACI Structural Journal, 100(4), 440-445.
[5] Parastesh H., Hajirasouliha I. & Ramezani R. 2014 A new ductil moment-resisting connection for precast concrete frames in seismic regions: An experimental investigation. Engineering Structures, 70, 144-157.
[6] Ha S. S., Kim S. H., Lee M. S. & Moon J. H., 2014 Performance Evaluation of Semi Precast Concrete Beam-Column Connections with U-Shaped Strands. Advances in Structural Engineering, 17 (11), 1585-1600.
[7] Ha S. S., Kim S. H., Moon J. H. & Lee L. H. 2010 Interior Beam-Column Joints With Wire Strands Subjected to Reverse Cyclic Loads. Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering, Paper No 1673.
[8] Shariatmadar H. & Zamani Beydokhti E. 2014 An Investigation of Seismic Response of Precast Concrete Beam to Column Connections: Experimental Study. ASIAN JOURNAL OF CIVIL ENGINEERING, 15(1), 41-59.
[9] Shariatmadar H. & Zamani Beydokhti E. 2011 Experimental Investigation of Precast Concrete Beam to Column Connections Subjected to Reversed Cyclic Loads. 6th International Conference on Seismology and Earthquake Engineering.
[10] Madhkhan M., Bahrami S. & Nazemi N. 2017 Numerical Investigation of Proposed Semi-Rigid Beam to Column Frame Connections. Modares Civil Engineering Journal, 17 (3), 171-182. (In Persian)
[11] Bahrami S., Madhkhan M., Shirmohammadi F. & Nazemi N. 2017 Behavior of two new moment resisting precast beam to column connections subjected to lateral loading. Engineering Structures, 132, 808-821.
[12] Esmaili J. & Ahooghalandary S. N. 2018 Introducing a Composite Beam in Precast Moment Frame with Aim of Eliminating Reinforcement Congestion in the Beam Without the Need for In-Suite Concrete. Modares Civil Engineering Journal, 18 (2), 13-24. (In Persian)
[13] Esmaili J. & Ahooghalandary S. N. & Farzam M. 2018 Introducing of a Typical Beam-to-Column Connection and Comparison of Its Behavior with Conventional Connections. Journal of Civil and Environmental Engineering, 48.2(91), 1-15. (In Persian)
[14] Tumengkol H. A., Irmawaty R., Parung H. & Amiruddin A. 2022 Precast Concrete Column Beam Connection Using Dowels Due to Cyclic Load. International Journal of Engineering, 35(1), 102-111.
[15] Yu J., Zhang E., Xu Z. & Guo Z. 2022 Seismic Performance of Precast Concrete Frame Beam-Column Connections with High-Strength Bars. Materials, 15(20), 7127.
[16] Yu J., Zhang W., Tang Z., Guo X. & Pospisil. S. 2020 Seismic behavior of precast concrete beam-column joints with steel strand inserts under cyclic loading. Engineering Structures, 216, 110766.
[17] Liu J., Yu D., Ding K. & Liu Y. 2023 Seismic Performance of a New Assembled Bolt-Connected Concrete Beam–Column Joint: Experimental Test and Finite Element Modeling. Applied sciences, 13(1), 73.
[18] Zhuang M. L., Sun C., Bai L., Gao L., Qiao Y., Zhang W., Lu C., Li Z., Ma Y. & Zhao Q. 2023 A restoring force model for a novel type of precast beam-to-column joints using mechanical connections. Case Studies in Construction Materials, 18, e01840.
[19] Minisrty of Roads & Urban Development Islamic Republic of Iran, Topic 9th of National Building Regulations: Design and construction of reinforced concrete buildings. Iran, 2013. (In Persian)
[20] ACI T1.1-01 2001 Acceptance Criteria for Moment Frames Based on Structural Testing. ACI Innovation Task Group 1 and Collaborators, American Concrete Institute, Detroit, USA.
[21] Key-Nia A. M., Analysis and design of reinforced concrete structures, Iran, Isfahan: Jahad Daneshgahy of IUT, 2016. (In Persian)
[22] Tabeshpour M. R., Nonlinear analysis of structures, Iran, Tehran: Fadak, 2018. (In Persian)