بررسی تاثیر مدول مماسی در ناحیه کار-سختی منحنی تنش-کرنش روی شکل‌پذیری ستون‌های لوله‌ای از جنس فولاد ضدزنگ

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده مهندسی عمران، دانشگاه فنی و حرفه ای، تهران، ایران
2 استادیار، دانشکده مهندسی عمران، دانشگاه فنی و حرفه ای، تهران، ایران
چکیده
با توجه به وابستگی شکل‌پذیری اجزای سازه‌ای به ظرفیت آن‌ها در حفظ پایداری پس از ناحیه تسلیم ماده، تاثیر تغییر مدول مماسی مربوط به ناحیه کارسختی در مورد یک نمونه فولاد ضدزنگ بر روی ظرفیت باربری پس‌ازکمانش ستون‌های لوله‌ای ملاحظه شده است. با توجه به هزینه بسیار کمتر مطالعات عددی نسبت به مطالعات آزمایشگاهی در مورد تغییرات مدول مماسی مصالح، روش مدل‌سازی المان‌محدود انتخاب شده و در مقایسه با نتایج آزمایشگاهی بر روی یک نمونه ستون با D/t=60 مورد تصدیق قرار گرفت که بدین منظور رفتار غیرخطی مصالح و هندسه در مدل ملاحظه شد. در ادامه مدل‌های المان محدود برای نسبت‌های مختلف D/t توسعه داده شده و مطابق با نتایج بدست آمده، با افزایش نسبت قطر به ضخامت برای ستون‌ها، دو پارامتر مهم در مورد شکل‌پذیری شامل اول، ظرفیت جذب انرژی و دوم، نسبت تغییرشکل ستون در آستانه فروریزش به تغییرشکل در لحظه تسلیم مقطع (e/g) با افزایش چشمگیری مشاهده شد، بعنوان مثال جذب انرژی و e/g در ستون D/t=30 نسبت به ستون D/t=60 به ترتیب حدود 35% و 111% افزایش پیدا کرد. دو مدل مذکور برای بررسی تاثیر تغییر مدول مماسی در ناحیه کار-سختی انتخاب شده و تاثیر مدول مماسی در دو بخش مقدم و موخر روی پارامترهای مربوط به میزان شکل‌پذیری ستون‌ها بررسی شد. نتایج بدست آمده، افزایش مدول مماسی ماده در بخش مقدم کار-سختی را دارای تاثیر مهم روی ظرفیت شکل‌پذیری ستون‌ها با نسبت D/t متوسط و مدول مماسی در بخش موخر کار-سختی را دارای تاثیر مهم در مورد ستون‌ها با نسبت D/t کمتر نشان دادند. با افزایش دو برابری مدول مماسی در بخش موخر کار-سختی، جذب انرژی و نسبت e/g در ستون D/t=30 به ترتیب به اندازه 111% و 71% نسبت به نمونه ستون با فرض ماده آزمایشگاهی افزایش پیدا کرد حال‌آنکه با افزایش دو برابری مدول مماسی در بخش مقدم کار-سختی، دو پارامتر یاد شده در مورد ستون D/t=60 به ترتیب به اندازه 26% و 46% نسبت به فرض ماده آزمایشگاهی افزایش یافت. نتایج این مطالعه نشان می دهد، جهت داشتن رفتار شکل‌پذیرتر برای ستون‌ها، می توان با تعریف ترکیب شیمیایی مناسب مصالح، بخش کار-سختی را با توجه به اندازه قطر به ضخامت ستون‌ها طرح کرده و از مزایای شکل‌پذیری بیشتر در اجزای سازه‌ها برخوردار بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

On the Influence of Tangential Modulus in Work-hardening Part of Stress-strain Curve on Ductility of Stainless-steel Tubular Columns

نویسندگان English

A. Nazari 1
A. Karimi 2
1 Department of Civil Engineering, Technical and Vocational University, Tehran, Iran
2 Department of Civil Engineering, Technical and Vocational University, Tehran, Iran
چکیده English

Regarding the dependence of ductility response in structural components on their ability to keep stability after yielding of the material, in this paper, the influence of change in tangential modulus of work-hardening part of stress-strain response, was observed on the load carrying capacity and plastic buckling response of stainless-steel tubular columns. To keep cost-effectivity in the research, the objective of the study was followed by FE modeling, which was verified by simulation of plastic buckling in an experimental specimen with D/t=60, made of duplex stainless-steel. For all components of the models, S4R elements were used and both material and geometrical nonlinearity were included in the models. To conduct deformation of the columns according to the experimental observations, an initial imperfection equal to t/100 to combination of first three mode shapes of the columns was imported. The material stress-strain response after yield point was determined for the model by a multilinear curve according to the tensile stress-strain curve, obtained experimentally. The main parameters for comparison of the FE model and experimental observation were force-displacement curves. The FE study was extended by modeling of stainless-steel columns with various D/t ratios in range of D/t=30-120. Two main parameters comprised of energy absorption capacity and deformation of the column related to yield of the section and collapse threshold (e/g) were compared to the columns with various D/t ratios.

According to force-deformation curves, by decrease of D/t ratio, the energy absorption capacity increased considerably for the columns, for example the energy absorption capacity and e/g ratio increased by 12% and 12%, respectively for comparison of the columns with D/t=60 and D/t=30, however, e/g ratio for the columns of D/t=120 and 100 were less than two, categorized as a force-controlled column. Two models with D/t=30, 60 were selected to follow the objective of the study. The work-hardening response of the material was approximated by two linear segments, the first by a tangential modulus equal to E=7.9 GPa and the second was by the tangential modulus equal to E=2.4 GPa. The influence of change in tangential modulus through a range between 0-200% was observed on the structural parameters related to ductility, comprised of energy absorption capacity up to collapse threshold and deformation of column at the collapse threshold. The results showed different reaction of the columns with different D/t ratios, increase of tangential modulus at the first work-hardening part was more significant than increase of the influence by the later part of the work-hardening response for the column of D/t=60, however an inverse effect was observed for the column of D/t=30, i.e. the influence of tangential modulus at the later part was more significant for this column. By doubling the tangential modulus of earlier part of the work-hardening response, the energy absorption capacity and e/g ratio for the column of D/t=60 increased by 26% and 46%, respectively. By doubling the tangential modulus of later part of work-hardening response, the energy absorption capacity and e/g ratio for the column of D/t=30 increased by 111% and 71%, respectively. The results showed significant parts of work-hardening response of duplex stainless-steel, to be exploited for development of ductility in the tubular columns.

کلیدواژه‌ها English

ductility
Buckling
Work-hardening response
Tubular column
Tangential modulus
FEMA 356, NEHRP Guidelines for the seismic rehabilitation of buildings. Washington DC: Federal Emergency Management Agency; 2000.
[2] S. Afshan, L. Gardner, The continuous strength method for structural stainless steel design, Thin-Walled Structures 68 (2013) 42–49.
[3] Van den Berg JG. The effect of the non-linear stress–strain behaviour of stainless steels on member capacity. J Constr Steel Res 2000;54:135-60.
[4] Abramowicz W, Jones N. Dynamic progressive buckling of circular and square tubes. nt J Impact Engng 1986;4(4):243-70.
[5] Abramowicz W, Jones N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically. Int J Impact Engng, 1997;19:415-37.
[6] Tvergaard V. On the transition from a diamond mode to an axisymmetric mode of collapse in cylindrical shells. Int J Solids Struct 1983;19(10):845–56.
[7] Gupta NK, Nagesh, Collapse mode transitions of thin tubes with wall thickness, end condition and shape eccentricity. Int J Mech Sci 2006;48:210-23.
[8] Gupta NK, Velmurugan R. Consideration of internal folding and non-symmetric fold formation in axisymmetric axial collapse of round tubes. Int J Solids Struct 1997;34(20), 2611–30.
[9] Gardner L, Wang F, and Liew A. Influence of strain hardening on the behaviour and design of steel structures. Int J Struct Stab Dy, 2011;11(5):855–75.
[10] Zhao O, Gardner L, Young B. Structural performance of stainless steel circular hollow sections under combined axial load and bending-Part 1: Experiments and numerical modelling. Thin-Wall Struct 2016; 101:231-9.
[11] Ashraf M, GardnerL, Nethercot D. Strength enhancement of the corner regions of stainless steel cross-sections. Journal of Constructional Steel Research 2005;61(1):37–52.
[12] Huang Y, Young B. Structural performance of cold-formed lean duplex stainless steel columns. Thin-Walled Struct 2014;83:59–69.
[13] ABAQUS. ABAQUS/Standard Users Manual. ABAQUS Inc; 2010.
[14] Teng JG, Hu YM, Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression, Constr Build Mater 2007;21(4):827–38.
[15] Nazari, A.R., Kabir, M.Z., Hosseni Toudeshky H. Development of work-hardening performance in stainless-steel cylindrical columns by application of CFRP jackets, Composite Structures 2018, 203:38–49.
[16] Zhao O, Gardner L, Young B. Structural performance of stainless steel circular hollow sections under combined axial load and bending – Part 1: experiments and numerical modelling. Thin-Wall Struct 2016;101:231–9.
[17] Sobel LH, Newman SZ. Plastic buckling of cylindrical shells under axial compression. J Press Vessel Technol 1980;102(1):40–4.