مدل‌سازی جریان دانه ‌ای در سیلو به روش نیمه ضمنی ذرات متحرک با تراک ضعیف (WCMPS) با مدل رئولوژیکی هرشل بالکی نمایی

نوع مقاله : پژوهشی اصیل (کامل)

نویسنده
گروه مهندسی عمران، پردیس بیجار، دانشگاه کردستان، سنندج، ایران.
چکیده
سیلوها در بسیاری از فرآیندهای صنعتی و مهندسی به طور گسترده مورد استفاده قرار می گیرند، بنابراین تخلیه مواد دانه ای و غلات از سیلوها به عنوان یکی از مهم ترین مسائل مورد توجه قرار گرفته است. با توجه به هزینه بالای مطالعات آزمایشگاهی بر روی مواد و شرایط مختلف، روش های محاسباتی به عنوان یک رویکرد جایگزین با هزینه بسیار کمتر مورد استفاده قرار می گیرند. به دلیل توانایی روش‌های لاگرانژی برای مدل‌سازی تغییر شکل‌ها و ناپیوستگی‌های بزرگ، در این مطالعه یک مدل لاگرانژی بدون شبکه بر اساس یک فرمول MPS با تراکم ضعیف برای شبیه‌سازی تخلیه سیلو از مواد دانه‌ای توسعه و ارزیابی شده است. در این مطالعه ماده دانه‌ای به‌عنوان یک سیال ویسکو-پلاستیک غیرنیوتنی در نظر گرفته می‌شود و یک مدل رئولوژیکی هرشل-بالکی (H-B) تنظیم‌شده نمایی برای مدل‌سازی رفتار دانه‌های استفاده شده است. قابلیت روش عددی توسعه‌یافته برای تخلیه مواد دانه ای از سیلوها ارزیابی شده است و با نتایج آزمایشگاهی و روش DEM مقایسه شده است. مقایسه نتایج پروفیل سطح و پروفیل سرعت روش عددی توسعه‌یافته برای تخلیه دانه ها از سیلو با اندازه‌گیری‌های تجربی موجود و روش DEM، قابلیت‌های مدل پیشنهادی را برای پیش‌بینی دقیق پروفیل‌های سطح و سرعت در این مسئله نمونه را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling of Granular Flow in a Silo Using the Moving Particle Semi-implicit Method (MPS) with the Exponential Herschel-Balky Rheological Model

نویسنده English

E. jafari nodoushan
Department of Civil Engineering, Campus of Bijar, University of Kurdistan, sanandaj, Iran.
چکیده English

Silos are widely used in many industrial and engineering processes, so discharge grain from the silos is considered as one of the most important issues. Due to the high cost of laboratory studies on different materials and conditions, computational methods are used as a substitute approach for much less cost. Because of the ability of nonlinear Lagrangian methods to model large deformations and discontinuities, this study develops and evaluates a mesh-free Lagrangian model based on a weakly-compressible MPS formulation to simulate of the discharge of the granular silo. In Lagrangian methods, unlike the Eulerian method, instead of networking the solution field and breaking the equations on the nodes, the solution field is divided into a number of particles and the broken equations are solved on these particles. In fact, the governing equations are transformed into particle interaction equations using different operators. In the meantime, the particles that are closer to the particle under study will have a greater effect on that particle. In such a way that the effect of relatively distant particles can be ignored in comparison with closer particles and the interaction between particles can be limited to a specific domain called the radius of effect. The effect of each particle on the calculated particle is measured by a weight function. In the WC-MPS method, the system is considered as a system with weakly compressibility and calculates the pressure of each particle using the state equation. In this study, the Tait's state equation is used, which is used for high pressure water flow. The MPS method uses particle density to track the free surface. Because there are no particles outside the free surface, the density of the particles on the free surface decreases sharply. A particle is known as a free surface particle whose density is somewhat lower than the standard particle density. The value of this limit may be selected from 80% to 99% depending on the problem Therefore, the pressure of this particle on the free surface will be set to zero in each time step and in the MPS method, and there is no need to apply any additional condition for the free surface. For solid (impermeable) boundaries, such as walls or beds, this boundary condition is applied. In the vicinity of solid boundaries, the particle density decreases, which can lead to computational disturbances. Therefore, a number of ghost particles are located outside the boundaries to prevent this density reduction. In this method the granular material is considered as a non-Newtonian visco-plastic fluid and an exponentially Herschel-Balky (H-B) rheological model in combination with pressure-dependent yield criteria model is employed to model non-cohesive grain behavior. The ability of the developed numerical method to discharge grain from silos has been evaluated and compared with the experimental results and the DEM method. Comparison of the results of the developed numerical method for the discharge of grains from the silo with the available experimental measurements and the DEM method shows the capabilities of the proposed model to accurately predict the surface and velocity profiles in this sample problem.

کلیدواژه‌ها English

Moving particle semi-implicit method
exponentially Herschel-Balky (H-B) rheology
granular material
silo
[1] Medina, A., Cabrera, D., Lopez-Villa, A. and Pliego, M., 2014, Discharge rates of dry granular material from bins with lateral exit holes", Powder Technology, Vol. 253, 270-275.
[2] Leturia, M., Benali, M., Lagarde, S., Ronga, I. and Saleh, K., 2014, Characterization of flow properties of cohesive powders: Acomparative study of traditional and new testing methods, Powder Technology, Vol. 253, 406-423.
[3] Mankoc, C., Garcimartín, A., Zuriguel, I., Maza, D. and Pugnaloni, L.A., 2009, Role of vibrations in the jamming and unjamming of grains discharging from a silo, Physical Review E, Vol. 80, No. 1, 011309.
[4] Janda, A., Maza, D., Garcimartín, A., Kolb, E., Lanuza, J. andClément, E., 2009, Unjamming a granular hopper by vibration, EPL (Europhysics Letters), Vol. 87, No. 2, 24002.
[5] Zuriguel, I., Garcimartín, A., Maza, D., Pugnaloni, L.A. and Pastor, J., 2005, Jamming during the discharge of granular matter from a silo, Physical Review E, Vol. 71, No. 5, 051303.
[6] Akhondizadeh, M. Khalil, V. 2016, Effect of Material Wet on Silo Obstruction Solution by Impact, International Journal of Engineering (IJE), TRANSACTIONS B: Applications Vol. 29, No. 11, 1628-1634
[7] Akhondizadeh, M. Khosrav, M. Khalili, V. 2017, Experimental Determination of the Optimum Ball Impacts for Solution of Silo Obstruction, International Journal of Engineering (IJE),
[8] C.W. Hirt, B.D. Nichols, 1981. Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, Vol. 39, No. 1, pp. 201–225,
[9] J. Liu, S. Koshizuka, Y. Oka, 2005 A hybrid particle-mesh method for viscous, incompressible, multiphase flows, Journal of Computational Physics, Vol. 202, No. 1, pp. 65– 93.
[10] S. Koshizuka, A. Nobe, Y. Oka, 1998 Numerical analysis of breaking waves using the moving particle semi-implicit method, International Journal of Numerical Methods in Fluids, Vol. 26, No. 7, pp. 751–769.
[11] H. Gotoh, T. Sakai, 1999 Lagrangian simulation of breaking wave using particle method, Coastal Engineering Journal, Vol. 41, No. 3-4, pp. 303–326.
[12] H. Gotoh, T. Sakai, 2006 Key issues in the particle method for computation of wave breaking, Coastal Engineering Journal, Vol. 53, No. 2–3, pp. 171-179.

[13] B. Ataei-Ashtiani, L. Farhadi, 2006 A stable moving–particle semi-implicit method for free surface flows, Fluid Dynamics Research, Vol. 38, pp. 241-256.
[14] K. Shibata, S. Koshizuka, 2007 Numerical analysis of shipping water impact on a deck using a particle method, Ocean Engineering, Vol. 34, pp. 585-593.
[15] A. Khayyer, H. Gotoh, 2009 Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure, Coastal Engineering Journal, Vol. 56, pp. 419-440.
[16] A. Khayyer, H. Gotoh, 2010 A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method, Applied Ocean Research, Vol. 32, pp. 124-131.
[17] M. Kondo, S. 2011. Koshizuka, Improvement of stability in moving particle semi-implicit method, International Journal of Numerical Methods in Fluids, Vol. 65, No. 6, pp. 638-654.
[18] A. Shakibaeinia, Y.C. Jin, 2010. A weakly compressible MPS method for simulation of open-boundary free-surface flow, International Journal of Numerical Methods in Fluids, Vol. 63, No. 10, pp. 1208–1232,.
[19] A. Shakibaeinia, Y.C. Jin, 2011 MPS-based mesh-free particle method for modeling open-channel flows, Journal of Hydraulic Engineering, Vol. 137, No. 11, doi:10.1061/(ASCE)HY.pp.1943-7900.0000394.
[20] A. Shakibaeinia, Y.C. Jin, 2012. MPS mesh-free particle method for multiphase flows, Computer Methods in Applied Mechanics and Engineering, Vol. 229–232, pp. 13-26.
[21] Jafari Nodoushan, E., Hosseini, Kh, Shakibaeinia, A. and Mousavi, S.F. 2016, Meshless particle modelling of free surface flow over spillways. Journal of Hydroinformatics, 18(2), 354-370.
[22] Jafari Nodoushan, E., Shakibaeinia, A. and Hosseini, Kh. 2018, a multiphase meshfree particle method for continuum-based modeling of dry and submerged granular flows. Powder Technology, 335, 258-274.
[23]Tajnesaie, M., Shakibaeinia, A., & Hosseini, K. 2018, Meshfree particle numerical modelling of sub-aerial and submerged landslides. Computers & Fluids, 172, 109-121.
[24] Jafari Nodoushan, E and Shakibaeinia, A. 2019, Multiphase mesh-free particle modeling of local sediment scouring with μ(I) rheology. Journal of Hydroinformatics, 21(2), 279-294.
[25] Courant, R., Friedrichs, K., and Lewy, H. 1967. “On the partial difference equations of mathematical physics.” IBM J. Res. Dev., 11(2), 215–234 (English translation of the 1928 German original)
[26] Papanastasiou, T.C. 1987, Flows of materials with yield. Journal of Rheology, 31, 385-404.
[27] Zhua, H., Kimb, Y.D and De D. Keea. 2005."Non-Newtonian fluids with a yield stress, J. NonNewtonian Fluid Mech. 129, pp. 177–181.
[28] Koshizuka, S., Tamako, H., and Oka, Y. 1995. A particle method forincompressible viscous flow with fluid fragmentation. Computational Fluid Dynamics Journal, 4(1): 29–46.
[29] Kasina, V. P. R., 2016, DEM modelling and quantitative validation of flow characteristics and blending of pellets in a planar silo. Thesis, Institute for Infrastructure and Environment School of Engineering University of Edinburgh.