تعیین شاخص خرابی سازه‌های سه‌بعدی فولادی مجاور هم با در نظر گرفتن تأثیر اندرکنش سازه-خاک-سازه و بررسی عملکرد آنها در حوزه زمان و فرکانس

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه سمنان
چکیده
ارزیابی سازه ­های آسیب ­دیده در حین زلزله­ های دهه اخیر مشخص کرده که اندرکنش خاک-سازه و مجاورت سازه ­ها درکنار یکدیگر ازجمله عواملی هستند که بر میزان آسیب­ های جانی، مالی و تخریب سازه­ ها اثر به سزایی دارند. در این مقاله عملکرد لرزه ­ای سازه­ سه‌بعدی فولادی یک‌بار با در نظر گرفتن اندرکنش خاک-سازه و بار دیگر با در نظر گرفتن دو سازه مشابه کنار یکدیگر روی خاک (اندرکنش سازه-خاک-سازه) ارزیابی شده ­است. برای دستیابی به این منظور مدل­ های سه‌بعدی از سازه­ فولادی شش طبقه با پلان متقارن و سیستم­ های باربر جانبی قاب خمشی و قاب مهاربندی‌شده طراحی‌شده است. نوع خاک مدل­سازی شده، از نوع سست بوده و مدل­سازی خاک با روش زیر سازه (فنر غیرخطی وینکلر) انجام شده­است. برای انجام تحلیل­ تاریخچه زمانی غیرخطی، 11 زلزله مورد استفاده قرار گرفته ­است. نتایج به‌دست‌آمده از تحلیل­ های تاریخچه زمانی مشخص کرده که اندرکنش سازه-خاک-سازه موجب افزایش دامنه تغییرمکانی بام سازه به میزان 58 درصد نسبت به پاسخ سازه تنها روی خاک می­ گردد. ارزیابی پاسخ تغییر مکان سازه در حوزه فرکانسی (چگالی طیفی) مشخص کرده که اندرکنش سازه-خاک-سازه باعث افزایش در دامنه چگالی طیفی (به‌طور متوسط 6/44 درصد افزایش دامنه چگالی طیفی اتفاق افتاده است) و تغییرات در فرکانس غالب مجموعه سازه و خاک شده که نیاز به بررسی بیشتری دارد. از طرف دیگر نتایج مشخص کرده است که اندرکنش سازه-خاک-سازه به‌طور متوسط تا 32 درصد شاخص خرابی سازه را نسبت به اندرکنش خاک-سازه افزایش می­ دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluating Damage Indices for Adjacent 3D Steel Structures Considering SSSI Effects and Assessment of Seismic Performance in Time/Frequency Domain

نویسندگان English

F. Nabati
M. Khodakarami
Semnan University
چکیده English

Seismic waves of structural vibrations propagating through the soil and transmitting to other structures, and the effect this has on seismic performance, have recently come up due to the result of recent ground movements originating in soft soil zones like Mexico City. In regions with densely built structures, this vibration may have a significant impact on structural responses. The purpose of this research is to evaluate the seismic performance of a single structure on soil (Soil-Structure Interaction, or SSI) vs. that of a pair of similar structures with differing soil conditions (Structure-Soil-Structure Interaction, or SSSI). Recent research suggests that damage risks may increase due to the SSSI impacts. The studied structure is a three-dimensional, six-story steel building with a foundationally sound moment and braced frames lateral force resisting system. To account for the non-linear behavior shown by SSSI and SSI models, a three-dimensional steel structure is presented in OpenSEES. For simulating the soil easily under the foundations and between structures, the nonlinear Beam-on-Nonlinear-Winkler-Foundation (BNWF) model is employed. There is a meter of space between structures. Therefore impact between buildings is prohibited. The SSSI and SSI systems are examined using 11 horizontal components. Ground motion magnitudes ranges from Mw = 5.0 to Mw = 8.5, soil shear velocity varies from Vs30=185 m/s to Vs30=365 m/s, and distance from faults goes from 10 km to 50 km. The two orthogonal horizontal components of selected seismic ground motion stimulate the system. Inter-story drift ratio, roof displacement, and plastic hinge rotations of structural elements are among the reactions of importance. In the SSSI and SSI models, the Park-Ang damage index is utilized to calculate the local and global damage index. This damage indicator is divided into two categories: deformation and energy-based indices. The current study's findings show that the SSSI model increases the roof displacement response by up to 58%. When the SSI and SSSI cases are compared, it is discovered that the SSSI case increases the inter-story drift ratio by 118% in the moment frame and by 53% in the braced frame. In addition to this, it is shown that, in general, a second structure may have a significant impact on the frequency amplitude of a system that is adjacent to it. According to the data, the amplitude of the power spectrum density in the SSSI model is more than 44.6% higher than that which is found in the SSI model. According to the findings, the damage index predicted by SSSI models is 32% greater than that predicted by SSI models. It is important to keep in mind that constructing a second building next to an existing one is often counterproductive and raises the possibility of damage occurring in both of the structures. As a result of the findings, it is clear that more study into SSSI phenomena and their influence on structural seismic risk is necessary. This is because it has been shown that adjacent buildings may significantly increase a structure's vulnerability to earthquakes.

کلیدواژه‌ها English

Soil-Structure-Interaction (SSI)
Structure-Soil-Structure Interaction (SSSI)
Steel Structure
nonlinear dynamic analysis
Damage index
[1] Arbabi, M., Tahghighi, H. (2020). Influence of nonlinear SSI on the seismic response of low-to-mid-rise steel moment resisting frame buildings. Journal of structural and construction engineering, Special Issue 3, 52-53.
[2] Radkia, S., Gandomkar, F.A., Rahnavard, R. (2019). Seismic Response of Asymmetric Sliding Steel Structure with Considering Soil-Structure Interaction Effects. Journal of structural and construction engineering, 6(3), 105-120.
[3] Nakhaei, M., & Ghannad, M. A. (2008). The effect of soil–structure interaction on damage index of buildings. Engineering Structures, 30(6), 1491-1499.
[4] Bitarafan, M., & Vahdani, R. (2020). Assessing the effect of soil-structure interaction on damage indices of reinforced concrete frames. European Journal of Environmental and Civil Engineering, 24(11), 1693-1708.
[5] Karkabadi, A., Khodakarami, M., Nabati, F. (2021). Evaluation Damage Index of Steel Moment frames by Considering the Effects of Soil-Structure Interaction under Seismic Sequence, Bulletin of Earthquake Science and Engineering, 8(3), pp. 57-76. doi: 10.48303/bese.2021.245994.
[6] Warburton, G. B., Richardson, J. D., & Webster, J. J. (1971). Forced vibrations of two masses on an elastic half space.
[7] Luco, J. E., & Contesse, L. (1973). Dynamic structure-soil-structure interaction. Bulletin of the Seismological Society of America, 63(4), 1289-1303.
[8] Kobori, T., Minai, R., & Kusakabe, K. (1973). Dynamical characteristics of soil-structure cross-interaction system, I. Bulletin of the Disaster Prevention Research Institute, 22(2), 111-151.
[9] Triantafyllidis, T., & Prange, B. (1987). Dynamic subsoil-coupling between rigid rectangular foundations. Soil Dynamics and Earthquake Engineering, 6(3), 164-179.
[10] Triantafyllidis, T., & Prange, B. (1989). Dynamic subsoil-coupling between rigid, circular foundations on the halfspace. Soil Dynamics and Earthquake Engineering, 8(1), 9-21.
[11] Lysmer J, Seed HB, Udaka T, Hwang RN, Tsai CF. Efficient finite element analysis of seismic soil structure interaction. Report No. EERC 75-34. Berkeley, CA: Earthquake Engineering Research Center, University of California; 1975.
[12] Mattiesen, P. B., & MacCalden, R. B. (1974). Coupled response of two foundations. In 5th World Conference on (Vol. 548). Rome, Italy.
[13] Kitada, Y., Hirotani, T., & Iguchi, M. (1999). Models test on dynamic structure–structure interaction of nuclear power plant buildings. Nuclear Engineering and Design, 192(2-3), 205-216.
[14] Boutin, C., Hans, S., Ibraim, E., & Roussillon, P. (2005). In situ experiments and seismic analysis of existing buildings. Part II: Seismic integrity threshold. Earthquake engineering & structural dynamics, 34(12), 1531-1546.
[15] Yano, T., Naito, Y., Iwamoto, K., Kitada, Y., & Iguchi, M. (2003). Model Test on Dynamic Cross Interaction of Adjacent Building in Nuclear Power Plants-Overall Evaluation on Field Test (K274).
[16] Li, P. Z., Hou, X. Y., Liu, Y. M., & Lu, X. L. (2012, September). Shaking table model tests on dynamic structure-soil-structure interaction during various excitations. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal (pp. 23-28).
[17] Aldaikh, H., Alexander, N. A., Ibraim, E., & Knappett, J. (2016). Shake table testing of the dynamic interaction between two and three adjacent buildings (SSSI). Soil Dynamics and Earthquake Engineering, 89, 219-232.
[18] Yahyai, M., Mirtaheri, M., Mahoutian, M., Daryan, A. S., & Assareh, M. A. (2008). Soil structure interaction between two adjacent buildings under earthquake load. American Journal of Engineering and Applied Sciences, 1(2), 121-125.
[19] Padron, L. A., Aznarez, J. J., & Maeso, O. (2009). Dynamic structure–soil–structure interaction between nearby piled buildings under seismic excitation by BEM–FEM model. Soil dynamics and earthquake engineering, 29(6), 1084-1096.
[20] Bard, P. Y., Chazelas, J. L., Guéguen, P., Kham, M., & Semblat, J. F. (2008). Site-city interaction. In Assessing and managing earthquake risk (pp. 91-114). Springer, Dordrecht.
[21] Bolisetti, C., & Whittaker, A. S. (2011). Seismic structure–soil–structure interaction in nuclear power plant structures. Transactions, SMiRT, 21, 6-11.
[22] Alexander, N. A., Ibraim, E., & Aldaikh, H. (2013). A simple discrete model for interaction of adjacent buildings during earthquakes. Computers & Structures, 124, 1-10.
[23] Vicencio, F., & Alexander, N. A. (2018). Dynamic interaction between adjacent buildings through nonlinear soil during earthquakes. Soil Dynamics and Earthquake Engineering, 108, 130-141.
[24] Vicencio, F., & Alexander, N. A. (2019). Dynamic Structure-Soil-Structure Interaction in unsymmetrical plan buildings due to seismic excitation. Soil Dynamics and Earthquake Engineering, 127, 105817.
[25] Vicencio, F., & Alexander, N. A. (2018). Higher mode seismic structure-soil-structure interaction between adjacent buildings during earthquakes. Engineering Structures, 174, 322-337.
[26] Gan, J., Li, P., & Liu, Q. (2019). Study on dynamic structure-soil-structure interaction of three adjacent tall buildings subjected to seismic loading. Sustainability, 12(1), 336.
[27] Liang, J., Han, B., Todorovska, M. I., & Trifunac, M. D. (2018). 2D dynamic structure-soil-structure interaction for twin buildings in layered half-space II: Incident SV-waves. Soil Dynamics and Earthquake Engineering, 113, 356-390.
[28] Sharifi, B., Nouri, G., & Ghanbari, A. (2020). Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses. Earthquakes and Structures, 18(6), 667-675.
[29] Esmailzadeh Shahri, R. Karamodin, A. (2019). Numerical Study of Structure-Soil-Structure Interaction Effects on Deflection Amplification Factor and Correction for Special Steel Moment Frames. Journal of structural and construction engineering, 6(4), 55-70.
[30] Amini-Moghaddam, S. Khodakarami, M.I. (2021). The adequacy of the separation gap between the adjacent structural frames considering the effects of structure-soil-structure- interaction and using particle swarm optimization algorithm. Journal of structural and construction engineering, 8(3), 154-168.
[31] Ghandil, M., Behnamfar, F., & Vafaeian, M. J. S. D. (2016). Dynamic responses of structure–soil–structure systems with an extension of the equivalent linear soil modeling. Soil Dynamics and Earthquake Engineering, 80, 149-162.
[32] Jeong, S. H., & Elnashai, A. S. (2006, October). Fragility analysis of buildings with plan irregularities. In 4th International Conference on Earthquake Engineering (4ICEE) (No. 145).
[33] ASCE07 (2016) Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers (ASCE), Reston.
[34] ANSI, AISC 360 (2016) Specification for structural steel buildings. American Institute of Steel Construction, Chicago.
[35] Mazzoni S, McKenna F, Scott MH, Fenves GL (2006). The open system for earthquake engineering simulation (OpenSEES) user command-language manual. University of California, Berkeley, CA.
[36] Lignos DG, Krawinkler H (2010) Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. J Struct Eng 137(11):1291–1302.
[37] ASCE41 (2017) Seismic evaluation and retrofit of existing buildings (ASCE/SEI 41-17). American Society of Civil Engineers, Reston.
[38] Gajan S, Hutchinson TC, Kutter BL, Raychowdhury P, Ugalde JA, Stewart JP (2008) Numerical models for analysis and performance-based design of shallow foundations subjected to seismic loading. Pacific Earthquake Engineering Research Center, Berkeley.
[39] Harden CW (2005) Numerical modeling of the nonlinear cyclic response of shallow foundations. Pacific Earthquake Engineering Research Center, Berkeley.
[40] Kunnath, S. K., Reinhorn, A. M., & Lobo, R. F. (1992). IDARC Version 3.0: A program for the inelastic damage analysis of reinforced concrete structures. Buffalo, NY: National Center for Earthquake Engineering Research.