پایش سلامتی و تشخیص آسیب ستون تحت اثر بار محوری با استفاده از داده‌های دینامیکی مودال و روش تحلیلی موجک

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری سازه، دانشکده مهندسی عمران، دانشگاه کردستان، سنندج، ایران
2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران
3 استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران
4 مربی، دانشکده مهندسی عمران، دانشگاه ولایت، ایرانشهر، ایران
5 دکتری سازه، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران
چکیده
همواره سازه‌‌ها تحت اثر عوامل طبیعی و یا غیر طبیعی متعددی همچون زلزله، انفجار و گودبرداری‌های غیر اصولی واقع‌اند که می‌تواند آسیب‌های موضعی موجود در آن‌ها را تشدید نموده و باعث انهدام آن‌ها و در نتیجه، ایجاد خسارت‌های جانی و مالی فراوانی شود؛ بنابراین، پایش سلامتی سازه‌ها و اعضای سازه‌ای بسیار مهم و حائز اهمیت است. در این نوشتار، پایش سلامت عضو سازه‌ای ستون با لحاظ نمودن اثر بار محوری بر پاسخ‌های دینامیکی مودال (فرکانس‌های طبیعی و شکل‌های مود ارتعاشی) انجام شد. نتایج بررسی‌ها نشان داد که فرکانس‌های طبیعی تمامی مودها در هر دو وضعیت سالم و آسیب با افزایش بار محوری به صورت نسبت‌هایی از بار بحرانی مبنا (بار بحرانی بدترین حالت آسیب) کاهش می‌یابد. همچنین، در بارگذاری‌های یکسان، همواره فرکانس نمونه سالم از فرکانس نمونه آسیب بیشتر است؛ به‌طوری‌که با افزایش شدت آسیب، اختلاف فرکانسی وضعیت‌های سالم و آسیب افزایش می‌یابد. با معرفی یک شاخص شناسایی آسیب (DDI) بر مبنای ضرایب موجک حاصل از جزئیات آنالیز موجک شکل‌های مود وضعیت‌های سالم و آسیب، محل‌های آسیب با دقت بالایی به صورت پرش و یا اغتشاش در DDI شناسایی گردید. همچنین، بررسی‌ها نشان داد که DDI محل‌های مختلف آسیب مستقل از هم بوده و تنها متأثر از شدت آسیب محل مورد نظر است و اثرات بار محوری بر DDI بسیار ناچیز و قابل چشم پوشی است. مستقل بودن DDI محل‌های مختلف آسیب نشان دهنده کارآمدی روش پیشنهادی در شناسایی محل‌های آسیب است؛ زیرا در غیر اینصورت، ممکن است عدم شناسایی یک محل آسیب بر شناسایی سایر محل‌های آسیب تأثیرگذار باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Health Monitoring and Damage Assessment of a Column under the Effect of Axial Load Using Modal Dynamic Data and Wavelet Analytical Method

نویسندگان English

M. Khanahmadi 1
O. Rezayfar 2
M. Gholhaki 3
B. Dejkam 4
A. Younesi 5
1 Ph.D. Student of Structural Eng., Faculty of Civil Engineering, University of Kurdistan, Kurdistan, Iran
2 Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
4 M.Sc. of Structural Eng., Faculty of Civil Engineering, University of Velayat, Iranshahr, Iran
5 Ph.D. of Structural Eng., Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده English

The health of structures, provision of safety, and the sense of security are among constant requirements and perpetual challenges of engineering and managers in the field of crisis management. Erosion and occurrence of minor local damage to structures and structural members in the early stages of construction or during operation, especially in critical structures such as power plants, tall buildings, stairs, dams, airports, and hospitals, among others, have always been among major problems. In case the damage sites are not identified timely and decisions are not made appropriately, substantial irreparable damage is expectable. Structures are always affected by various natural or unnatural factors such as earthquakes, explosions, and unprincipled excavations, which can aggravate the local damage in them and lead to their destruction, hence substantial human and financial losses. Therefore, it is highly crucial to monitor the health of structures and structural members. Therefore, health monitoring in structures and structural members is highly important. The column is one of the most significant members of engineering structures, especially in building structures and bridges, so that the instability of one of these members can lead to instability and destruction of the structure. Hence, design engineers expect columns to be the last members of structures to be damaged. In this paper, the health monitoring of the column as a structural member was performed by considering the effect of axial load on modal dynamic responses (i.e., natural frequencies and mode shapes). The results showed that the natural frequencies of all modes in both healthy and damaged states decreased with increasing axial load in proportions of the base critical load (the worst-case limit load). Also, at the same loads, the frequency of the healthy sample was always higher than that of the damaged sample so that the frequency difference between healthy and damaged states increased with greater severity of the damage. By introducing a Damage Detection Index (DDI) based on the wavelet coefficients obtained from the details of wavelet analyses of damaged and undamaged modes, the damage sites could be identified with a simple check and high accuracy by observing vibrations in DDI. Also, studies have shown that the DDIs of different damaged sites are independent of each other and are only affected by the severity of the damage and that the effects of axial load on DDI are very small and negligible. The independence of the DDIs of different damaged sites indicates the effectiveness of the proposed method in identifying damaged sites. Otherwise, failure to identify one damaged site may affect the identification of other damaged sites. The damage detection capability using the proposed DDI was investigated in columns with different support sections and conditions, and successful troubleshooting results were obtained. Moreover, investigations were performed with other wavelet functions, and the damage site was successfully identified. The proposed damage detection indicator is an efficient index in the column structures under the effect of axial load with axial buckling-prone support conditions and is proposed as a reliable method in identifying column damage sites in practical health monitoring of structures.

کلیدواژه‌ها English

Structural health monitoring
Column Under The Effect Of Axial Load
Modal Dynamic Response
Wavelet Analysis
Damage detection
[1] Majumdar, A., Maiti, D.K., Maity, D., 2012 Damage assessment of truss structures from changes in natural frequencies using ant colony optimization, Applied Mathematics and Computation, 218(19), 9759-9772.
[2] Rytter, A., 1993 Vibrational based inspection of civil engineering structures, Department of Building Technology and Structural Engineering, Aalborg University.
[3] Newland, D., 1994 Wavelet analysis of vibration. Part 1: Theory, Journal of Vibration and Acoustic, 116, 409-416.
[4] Newland, D., 1994 Wavelet analysis of vibration. Part 2: Wavelet Maps, Journal of Vibration and Acoustic, 116, 417-424.
[5] Sone, A., Yamamoto, S., Nakaoka, A., Masuda, A., 1995 Health monitoring system of structures based on orthonormal wavelet transform, Seismic Engineering, ASME, 312, 161-167.
[6] Hou, Z., Noori, M., Amand, R., 2000 Wavelet-based approach for structural damage detection, Journal of Engineering Mechanics, ASCE, 126, 677-683.
[7] Ovanesova, A.V., Suarez, L.E., 2004 Applications of wavelet transforms to damage detection in frame structures, Engineering Structures, 26, 39-49.
[8] Katunin, A., 2010 Identification of multiple cracks in composite beams using discrete wavelet transform, Scientific Problem of Machines Operation and Maintenance, 2(162).
[9] Ghodrati-Amiri, G.R., Bagheri, A., Seyed Razzaghi, S.A., Asadi, A., 2010 Structural damage detection in plate using wavelet transform, Challeges. Opportunities and Solution in Structural Engineering and Construction-Ghafoori (Ed).
[10] Bagheri, A., Kourehli, S., 2013 Damage detection of structures under earthquake excitation using discrete wavelet analysis, Asian Journal of Civil Engineering (BHRC), 14, 289-304.
[11] Xu, W., Radzienski, M., Ostachowicz, W., and Cao, M., 2013 Damage detection in plates using two-dimensional direction Gaussian wavelets and laser scanned operating deflection shapes, Structural Health Monitoring, 12(5-6), 457-468.
[12] Lee, S. G., Yun, G. J., and Shang, S., 2014 Reference-free damage detection for truss bridge structures by continuous relative wavelet entropy method, Structural Health Monitoring, 1-14.
[13] Li, J., and Hao, H., 2014 Substructure damage identification based on wavelet-domain response reconstruction, Structural Health Monitoring, 1-17.
[14] Katunin, A., 2015 Stone impact damage identification in composite plates using modal data and quincunx wavelet analysis, Archives of Civil and Mechanical Engineering, 15, 251-261.
[15] Patel, S., Chourasia, A., Panigrahi, S., Parashar, J., Parvez, N., Kumar, M., 2016 Damage identification of RC structures using wavelet transformation, Procedia Engineering, 144, 336-342.
[16] Rezaifar, O., Younesi, A., Gholhaki, M., Esfandiari, A., 2018 Debbonding damage detection in concrete filled tube columns by experimental modal data, Journal of Structural and Construction Engineering, 6(Special Issue 4), 93-106.
[17] Younesi, A., Rezaifar, O., Gholhaki, M., Esfandiari, A., 2019 Structural health monitoring of a concrete-filled tube column, Magazine of Civil Engineering, 85, 136-145.
[18] Wang, S., Li, J., Luo, H., Zhu, H., 2019 Damage identification in underground tunnel structures with wavelet based residual force vector, Journal of Engineering Structures, 178, 506-520.
[19] Hoseini Vaez, S., Arefzade, T., 2019 Comparison of static and modal analysis in damage detection of concrete gravity dams via wavelet transform, Sharif Journal of Civil Engineering, 35.2(1.1), 33-41. (In Persian)
[20] Khanahmadi, M., Rezayfar, O., Gholhaki, M., 2019 Damage detection in steel plates based on comparing analytical results of the discrete 2-D wavelet transform of primary and secondary modes shape, Journal of Structural and Construction Engineering, doi: 10.22065/JSCE.2019.174347.1799. (In Persian)
[21] Khanahmadi, M., Rezayfar, O., Gholhaki, M., 2019 Damage detection of prefabricated walls (panel 3D plates) based on wavelet transform detection algorithm”, Journal of Structural and Construction Engineering, doi: 10.22065/JSCE.2019.197470.1923. (In Persian)
[22] Khanahmadi, M., Rezayfar, O., Gholhaki, M., 2020 Comparative study on steel beams damage detection based on continuous and discrete wavelet transforms of static and dynamic responses, Journal of Structural and Construction Engineering. doi:10.22065/JSCE.2020.216647.2058. (In Persian)
[23] Khanahmadi, M., Gholhaki, M., Rezayfar, O. 2021 Damage identification of column under the axial load based on wavelet transform and modal data, Journal of Modeling in Engineering, 18(63). DOI: 10.22075/jme.2020.20940.1931. (In Persian)
[24] Hanteh, M., Rezaifar, O., Gholhaki, M., 2021 Selecting the appropriate wavelet function in the damage detection of precast panel building based on experimental results and numerical method, Sharif Journal of Civil Engineering. DOI: 10.24200/j30.2020.56237.2812. (In Persian)
[25] Hanteh, M., Rezaifar, O., 2021 Damage detection in precast full panel building by continuous wavelet analysis analytical method, Journal of Structures, 29, 701-713.
[26] Hanteh M, Rezaifar O, Gholhaki M., 2021 Selecting the appropriate wavelet function in the damage detection of precast full panel building based on experimental results and wavelet analysis, Journal of Civil Structural Health Monitoring, 1-24.
[27] Hanteh M, Rezaifar O, Gholhaki M., 2021 Damage detection in precast full panel building based on experimental results and continuous wavelet analysis analytical method, Modares Civil Engineering journal, 21(1), 13-29. (In Persian)
[28] Mallat, S., 2008 A wavelet tour of signal processing: the sparse way, Academic Press.
[29] Gao, R.X., and Yan, R., 2010 Wavelets: Theory and applications for manufacturing, Springer Science & Business Media.