بررسی آزمایشگاهی عملکرد مکانیکی بتن حاوی شیشه و لاستیک ضایعاتی در دمای بالا

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه آزاد واحد رودهن
2 دانشگاه آزاد اسلامی، واحد رودهن
3 دانشگاه گرمسار
چکیده
شیشه و لاستیک از جمله مواد بسیار پر مصرف در دنیا هستند که با توجه به ماهیت و نوع مصرفشان دارای ضایعات بسیاری می‌باشند. تغییرشکل و استفاده مجدد از این ضایعات یکی از راهکارهای بهبود وضعیت پایدار محیط زیست می‌باشد. کاربرد مصالح بازیافتی در صنایع مختلفی از جمله صنعت ساختمان رواج بسیاری یافته است. از طرف دیگر، بتن یکی از مصالح بسیار کاربردی در صنعت ساختمان است و اضافه کردن خرده‌های لاستیک و شیشه در بتن می‌تواند باعث بهبود برخی از خصوصیات مکانیکی و دینامیکی آن ‌شود. همچنین، مقاومت بتن در برابر حرارت نیز بسیار حائز اهمیت می‌باشد که با اضافه کردن لاستیک و شیشه ضایعاتی می‌توان آن را ارتقا داد. در این تحقیق اثر جایگزینی لاستیک با درصدی از سنگدانه‎های ریز و درشت بتن و پودر شیشه با درصدی از سیمان بتن تحت دمای بالا مورد مطالعه قرار گرفته است. به این ترتیب که نمونه‌های بتنی حاوی لاستیک و شیشه با درصدهای مختلف جایگزینی، ساخته شده است. سپس تعدادی از نمونه‌ها بدون قرار گرفتن تحت حرارت و تعدادی دیگر پس از قرار گرفتن تحت دمای 600 درجه سانتی‌گراد، مورد آزمایش مقاومت فشاری و کششی پسماند قرار گرفتند. بررسی ریزساختار بتن حاوی شیشه و لاستیک، توسط میکروسکوپ الکترونی روبشی (SEM) انجام شده است. نتایج این تحقیق نشان داد اضافه کردن لاستیک و شیشه به بتن باعث کاهش مقاومت فشاری و افزایش مقاومت کششی می‌شود. با مقایسه مجموع نمونه‌های حرارت ندیده و حرارت دیده می‌توان نتیجه گرفت که حرارت 600 درجه سانتی‌گراد، به‌طور متوسط حدود 33 درصد از مقاومت فشاری کاسته است. به‌طور کلی بتن‌های ساخته شده با 10 درصد جایگزینی لاستیک به‌جای درشت‌دانه و 15 درصد شیشه به‌جای سیمان عملکرد بهتری در دمای محیط و دمای بالا نشان دادند. همچنین در بررسی ریزساختار بتن، چسبندگی بین لاستیک و بتن مناسب بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Laboratory Study of Mechanical Performance of Concrete Containing Waste Glass and Rubber at High Temperature

نویسندگان English

R. Jafari 1
M. Alizadeh Elizei 2
M. Ziaei 3
R. Esmaeil Abadi 2
1 Azad University, Roodehen Branch
2 Islamic Azad University, Roodehen Branch
3 Garmsar University
چکیده English

With the advancement of technology in the world, industrial waste has become one of the most important environmental challenges. Deformation and reuse of these wastes is one of the ways to improve the sustainable state of the environment. Glass and rubber are among the most widely used materials in the world, which due to their nature have a lot of wastes. Waste tires cause a lot of environmental pollution due to their non-degradable materials. The use of waste glass and rubber in the construction industry can be a good solution in reusing waste materials. Concrete, on the other hand, is one of the most widely used materials in the construction industry, and the addition of rubber and glass crumb to concrete can improve some of its mechanical and dynamic properties. Of course, heat resistance of materials is one of the features that is effective in the type of application. Adding waste rubber and glass to concrete, of course, depending on their amount and size can increase the heat resistance of concrete to some extent.

In this research, the effect of replacing small and large aggregates with rubber and also glass powder with cement in concrete at ambient temperature and high temperature has been studied. The size of rubber used in concrete in two categories is 1 to 3 mm and 5 to 10 mm, which are replaced by fine-grained and coarse-grained, respectively, with replacement values ​​of 0, 5 and 10%. The size of the glass used is smaller than 75 microns and it can be replaced with cement with 0, 10, 15 and 20% replacement values. Shredded truck tires and powdered construction glass were used. In this study, cubic specimens were made into 15 x 15 x 15 cm specimens and cylindrical specimens with a diameter of 15 cm and a height of 30 cm were made according to the standards and processed for 28 days in optimal conditions. After processing, the number of cubic and cylindrical specimens was subjected to compressive and tensile tests. A number of other samples were placed in an electric furnace and heated to 600 ° C as standard. After removing the samples from the furnace, they were naturally placed at room temperature for 24 hours and then they were tested for the Residual compressive and tensile strength. The microstructure of concrete containing glass and rubber was examined by scanning electron microscope (SEM). The results of this study showed that adding rubber and glass to concrete causes a decreases compressive strength and increases tensile strength. The D10C10 design, which has the highest compressive strength, has a resistance reduction of about 12% compared to the reference design. The highest tensile strength of heated samples is related to D5C15 design, which is about 43% higher than the heated reference design. By comparing the sum of heated and unheated samples, it can be seen that heat at 600 ° C has reduced the compressive strength by an average of about 33%. In general, concrete made with 10% replacement of rubber instead of coarse in unheated samples and 15% glass instead of cement in heated samples showed better properties. Also, in the study of concrete microstructure, adhesion between rubber and concrete was appropriate.

کلیدواژه‌ها English

concrete
Glass powder
Waste rubber
High temperature
residual strength
[1] Terro M. 2006 Properties of concrete made with recycled crushed glass at elevated temperatures. Building and Environment 41 633–639.
[2] Emam Ali E. & Al-Tersawy S. “Recycled glass as a partial replacement for fine aggregate in self-compacting concrete,” Construction and Building Materials, 35,(2012) 785-791.
[3] Fletcher I., Welch S., Torero J., Carvel R. & Usmani A. 2007. Behaviour of Concrete Structures in Fire. Thermal Science,11 (2),p.37-52.
[4] Bisby L., Mostafaei H. & Pimienta P. 2014. State-of-the-Art on Fire Resistance of Concrete Structure. Structure-Fire Model Validation. Retrieved from Word-NIST-White-Paper-on-oncrete_DRAFT_25-03-14- pdf.
[5] Tung-Chai Ling. & Chi-Sun Poon, 2012 Stress-strain behaviour of fire exposed selfcompacting glass concrete, Fire Mater. 37 (4) 297–310.
[6] Yang T.C.S., Ling H. & Cui, C.S. 2019 Poon, Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks, Construction and Building Materials 209, 522-531.
https://doi.org/10.1016/j.conbuildmat.2019.03.131.
[7] Nabi M., Newaz Khan A., Kumer Saha P. & Kumar Sarker. 2021 Evaluation of the ASR of waste glass fine aggregate in alkali activated concrete by concrete prism tests. Construction and Building Materials, Volume 266, Part B, 10 January, 121121.
[8] Shayan A. & Xu A. 1999 Utilization of Glass as a Pozzolanic Material in Concrete”, ARRB TR Internal Report RC 91132.
[9] Vijayakumar G., Vishaliny H. & Govindarajulu D. 2013 Studies on Glass Powder as Partial Replacement of Cement in Concrete Production. International Journal of Emerging Technology and Advanced Engineering, 3 (2) 153-157.
[10] Sadiqul Islam G. M., Rahman M. H. & Kazi M. 2017 Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment.Volume 6, Issue 1, June 2017, Pages 37-44.
[11] Peyghambarzadeh S. A. & Baranjian J. 2016 Survey and comparison of the effect of glass powder, crumb and rubber crumb recycled on the mechanical properties of high strength concrete. Non- Governmental Higher Education Institutions. Non-Profit Tabari Higher Education Institute. Faculty of Civil Engineering. [Master Thesis]. "(In Persian)".
[12] Firouzjaei Z., 1393 The effect of adding recycled glass on the properties of self-compacting concrete at different temperatures, Master's thesis for Civil Engineering, Vali-e-Asr University, Rafsanjan, Faculty of Civil Engineering.
[13] Aslani F. & Khan M. 2019 Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete. J. Mater. Civ. Eng. 31(5): 04019040 Journal of Materials in Civil Engineering, © ASCE, ISSN 0899-1561. DOI: 10.1061/(ASCE)MT.1943-5533.0002672. © 2019 American Society of Civil Engineers.
[14] Prasad, D.S.V., Raju, G.V.R.P. & Kumar, M.A., 2009. Utilization of industrial waste in flexible pavement‌ construction.Electron.J.Geotech.lEng.13, e12.
[15] Raffoul S., Garcia R., Pilakoutas K., M., Guadagnini, N. & Medina F. 2016 Optimisation of rubberised concrete with high rubber content:An experimental investigation,” Construction and Building Materials 124 391–404.
http://dx.doi.org/10.1016/j.conbuildmat.2016.07.0540950-0618/_ 2016 Elsevier Ltd. All rights reserved.
[16] Bignozzi, M., & F. Sandrolini. 2006. “Tyre rubber waste recycling in selfcompacting concrete.” Cem. Concr. Res. 36 (4): 735–739.
https://doi.org/10.1016/j.cemconres.2005.12.011.
[17] Aslani F. 2016. “Mechanical properties of waste tire rubber concrete.” J. Mater. Civ. Eng. 28 (3): 04015152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001429.
[18] Aslani F., Ma G., Law Yim Wan D. & Le V.X.T. 2018a Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete. J.Cleaner Prod.172(20):1835-1847. https://doi.org/10.1016/j.jclepro.2017.12.003.
[19] Batayneh M.K., Marie I. & Asi I. 2008 Promoting the use of crumb rubber concrete in developing countries, Waste Manage. 28 (11) 2171–2176.
[20] Najim K.B. & Hall M.R. 2013 Crumb rubber aggregate coatings/pre-treatments and their effects on interfacial bonding, air entrapment and fracture toughness in self-compacting rubberised concrete (SCRC), Mater. Struct. 46 (12) 2029–2043.
[21] Najim K.B. & Hall M.R. 2012 Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr. Build. Mater. 27 (1) 521–530.
[22] Ganjian E., Khorami M. & Maghsoudi A.A. 2009 Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr. Build. Mater. 23(5 1828–1836.
[23] Gupta T., Chaudhary S. & Sharma R.K. 2014 Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate, Constr.Build. Mater. 73 562–574.
[24] Turki M., Bretagne E., Rouis M. & Quéneudec M. 2009 Microstructure, physical and mechanical properties of mortar–rubber aggregates mixtures. Constr. Build. Mater. 23 (7) 2715–2722.
[25] Jokar F., Khorram M., Karimi Gh. & Hatef N. 2017 Laboratory survey of mechanical properties of concrete containing waste rubber. the second international conference and exhibition of new technologies in the rubber and polymer industry, Shiraz. The international conference and exhibition of new technologies "(In Persian)".https://civilica.com/doc/659509.
[26] Razavian Amraei S A., Ali Dost A. F. & Jafari R. 1397 Seismic risk assessment of Hamedan city. Modeling in Engineering, 16 (55), 247-266. "(In Persian)". doi: 10.22075/jme.2018.10978.1057.
[27] Akbarzadeh B. H., Zangebari A. N. & Zangebari A. N. 2016 The effect of fire on the mechanical properties of concrete containing crumb rubber replaced with natural fine-grained. the First National Conference on Applied Research in Civil Engineering (Structural Engineering and Construction Management),Tehran. "(In Persian)". https://civilica.com/doc/580427.
[28] Iranian National Standard No. 389, "Properties of Portland Cement".
[29] ASTM C150-7 Standard Specification for Portland Cement. American Society for Testing and Materials (2012).
[30] Shahroud Cement Factory Website.
https://shahroudcement.com.
[31] ASTM C128-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate (2015).
[32] ASTM C127-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate (2015).
[33] Sgobba S., Borsa M., Molfetta M., Carlo Marano G., 2015 Mechanical performance and medium-term degradation of rubberized concrete. Construction and Building Materials 98 820–831.
http://dx.doi.org/10.1016/j.conbuildmat.
[34] ACI-211.1-91.Standard Practice for Selecting ProportionsforNormal,Heavyweight,and,Mas Concrete.
[35] ASTM C192/C192M-19 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory (2020).
[36] ASTM C172/C172M-17 Standard Practice for Sampling Freshly Mixed Concrete (2017).
[37] ASTM C511-21 Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes (2021).
[38] ASTM C143/C143M-20 Standard Test Method for Slump of Hydraulic-Cement Concrete (2020).
[39] BS 1881-124 Testing Concrete Methods for analysis of hardened concrete (2015).
doi: 10.22075/jme.2018.10960.1060.
[40] ASTM C496/C496M-17 Standard Test Method for
plitting Tensile Strength of Cylindrical Concrete Specimens (2017).