مطالعه تاثیر سولفات منیزیم برمقاومت سطحی بتن خود ‌متراکم با استفاده از آزمون "پیچش"

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استاد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران.
2 کارشناس ارشد، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران
3 دکتری، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران
چکیده
مقاومت و نفوذپذیری لایه سطحی بر دوام سازه های بتنی موثر هستند. زیرا لایه سطحی می تواند ورود مواد زیان آور به داخل بتن را محدود نماید. همچنین فقدان تراکم لایه سطحی، به دلیل مشکل بودن ویبره در فضاهای محدود، به عنوان یکی از دلایل اصلی دوام ضعیف بتن در معرض تهاجم عوامل محیطی، می باشد. در این تحقیق با استفاده از آزمون "پیچش"، تاثیر سولفات منیزیم بر مقاومت سطحی بتن های خود متراکم مورد بررسی قرار گرفته است. با توجه به روش اعمال آزمون "پیچش"، این آزمون مناسب برای آزمایش های سنجش تغییرات سطحی بتن می باشد. برای ساخت بتن خود متراکم از پر کننده خاکستر بادی به مقدار 25، 35 و 45 درصد سیمان و با نسبت آب به پودر برابر 36/0 استفاده شد. همچنین یک طرح‌ مخلوط بتن معمولی با نسبت آب به سیمان برابر 45/0 به عنوان شاهد جهت بررسی تاثیر سولفات منیزیم بر مقاومت بتن خود متراکم مورد مطالعه قرار گرفتند. آزمایش‌های بتن خود متراکم شامل آزمایش جریان اسلامپ، زمان جریان اسلامپ50 سانتیمتر، قیف V شکل، افزایش زمان قیف V شکل (5 دقیقه) و قالب L شکل، جهت مقایسه با معیارهای پذیرش بتن خود متراکم بر روی نسبت های اختلاط بتن خود متراکم انجام گردید. نتایج حاصله بیانگر این می باشد سولفات منیزیم باعث کاهش مقاومت سطحی بتن معمولی به اندازه 3/7، 7/9 و 1/7 درصد به ترتیب در سنین 28، 7 و 3 روز گردیده است. اما در سنین ذکر شده، آب سولفاته نه تنها تاثیر منفی روی مقاومت سطحی بتن خود متراکم حاوی خاکستر بادی ندارد بلکه شرایط عمل آوری بهتری را برای این نمونه ها فراهم می نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Effect of Magnesium Sulfate on the Surface Strength of Self-compacting Concrete Using "Twist-off" Test

نویسندگان English

M. Naderi 1
M. Nasiri 2
A. Saberi Varzaneh 3
1 Professor, Imam Khomeini International University, Qazvin, Iran.
2 Master, Imam Khomeini International University, Qazvin, Iran.
3 Ph.D, Imam Khomeini International University, Qazvin, Iran.
چکیده English

The durability of a concrete structure is highly dependent on the strength and permeability of the surface layer, as it is the surface layer that must prevent the entry of materials that can initiate or enhance the harmful effects on concrete. Sulfates are one of the most common destructive factors in concrete in most parts of Iran, especially in the southern regions of the country where concrete is exposed to seawater (which contains sulfate compounds). Also, the lack of compaction of the surface layer, due to the difficulty of vibration in limited spaces between molds and rebars and other accessories, is one of the main reasons for the poor durability of reinforced concrete structures exposed to environmental factors. Naturally, incorrect vibration results (worming, detachment, dehydration) have stronger negative effects on permeability and therefore durability. Self-compacting concrete with suitable properties is free from these defects and as a result, materials with less inconsistency and uniform permeability have less weaknesses for environmental harmful factors and, therefore, have better durability. Therefore, considering that the "torsion" test shows good sensitivity to surface changes of concrete, so in this study, using the "torsion" test, the effect of magnesium sulfate on the surface strength of self-compacting concretes has been investigated. In the "twist" test, a 5 cm diameter metal cylinder is glued to the surface of the test site using epoxy resin adhesive. Then, using a conventional hand-held tachometer, a torsion anchor is inserted into the metal cylinder to break the test object. The equipment used in the "twist" test is very cheap, simple and accessible compared to other corresponding tests. The damage from the "torsion" test is very superficial and minor, and by causing failure in the test object itself, it directly determines its strength. Self-compacting concrete mixing designs were studied by replacing 25, 35 and 45% cement with fly ash filler, and a conventional concrete mixing design as a control to study the effect of magnesium sulfate on the strength of self-compacting concrete. Self-compacting concrete tests including slump flow test, slump flow time of 50 cm, V-shaped funnel, V-shaped funnel increase time (5 minutes) and L-shaped mold were performed on self-compacting concrete acceptance criteria on self-compacting concrete mixing designs. . The results indicate that sulfated water not only does not have a negative effect on the surface strength of self-compacting concrete containing fly ash, but also provides better curing conditions for these samples. The use of fly ash also makes the magnesium sulfate solution a more suitable medium than ordinary water for the surface strength of self-compacting concretes. The process of obtaining surface strength in almost all self-compacting samples treated in magnesium sulfate solution is more than that in ordinary water. However, in the case of ordinary concrete, the process of obtaining the surface strength of all samples placed in magnesium sulfate solution is less. For self-compacting samples treated in magnesium sulfate solution, with increasing the percentage of fly ash, the surface resistance of 3 and 7 days decreases. But the 28-day surface resistance increases.

کلیدواژه‌ها English

Surface strength
Twist-off
Self-compacting concrete
Magnesium sulfate
Fly ash
[1] F.M. Kilinckale. The effect of MgSO4 and HCl solutions on the strength and durability of pozzolan cement mortars, Cem. Concr. Res. (1997) 27 (12) 1911–1918.
[2] J. Zelic, I. Radovanovic, D. Jozic, The effect of silica fume additions on the durability of Portland cement mortars exposed to magnesium sulfate attack, Mater. Technol. 41 (2) (2007) 91–94.
[3] G.G. Liu, J. Ming, X.W. Zhang, A.B. Ma, Study on the durability of concrete with mineral admixtures to sulfate attack by wet-dry cycle method, Adv. Mater. Res. 295–297 (2011) 165–169.
[4] N. Ghafoori, M. Najimi, H. Diawara, M.S. slam, Effects of class F fly ash on sulfate resistance of Type V Portland cement concretes under ontinuous and interrupted sulfate exposures, Constr. Build. Mater. 78 (2015) 85–91.
[5] G.G. Liu, J. Ming, X.W. Zhang, A.B. Ma, Study on the durability of concrete with mineral admixtures to sulfate attack by wet-dry cycle method, Adv. Mater. Res. 295–297 (2011) 165–169.
[6] Q. Nie, C. Zhou, X. Shu, Q. He, B. Huang, Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate
environment in Northwest China, Materials 7 (5) (2014) 3772–3785.
[7] P.K. Acharya, S.K. Patro, Acid resistance, sulphate resistance and strength properties of concrete containing ferrochrome ash (FA) and lime, Constr. Build. Mater. 120 (2016) 241–250.
[8] L. Jiang, D. Niu, Study of deterioration of concrete exposed to different types of sulfate solutions under drying-wetting cycles, Constr. Build. Mater. 117 (2016) 88–98.
[9] Effect of sea water and MgSO4 solution on the mechanical properties and durability of self-compacting mortars with fly ash/silica fume. Ahmet Benli b, Mehmet Karatas a, Elif Gurses a. Construction and Building Materials 146 (2017) 464–474.
[10] Magnesium Sulfate (MgSO4) Attack and Chloride Isothermal Effects on the Self‑consolidating Concrete Containing Metakaolin and Zeolite. Iranian Journal of Science and Technology, Transactions of Civil Engineering. Kianoosh Samimi1 · Ali Akbar Shirzadi Javid2. 2020. https://doi.org/10.1007/s40996-020-00398-6.
[11] Maes M, Mittermayr F, De Belie N (2017) The influence of sodium and magnesium sulfate on the penetration of chlorides in mortar. Mater Struct 50(2):153
[12] Neville A (2004) The confused world of sulfate attack on concrete. Cem Concr Res 34(8):1275–1296.
[13] Santhanam M (2001) Studies on sulfate attack – mechanisms, test methods and modeling. PhD Dissertation Purdue University, West Lafayette, Indiana, USA.
[14] Naderi, M. “New Twist-Off Method for the Evaluation of In-Situ Strength of Concrete”, Journal of Testing and Evaluation/Citation, Vol. 35, Issue 6. (2005).
[15] Saberi Varzaneh, A. and Naderi, M. Determination of Compressive and Flexural Strengths of In-situ Pozzolanic Concrete Containing Polypropylene and Glass Fibers Using "Twist-off" Method. Modares Civil Engineering Journal (M.C.E.J). Vol.20, No.5, Oct. 2020.
[16] Naderi, M., Smaili, A., and Saberi Varzaneh, A. Assessment of the application "twist-off" method for determining the in situ compressive and flexural strengths in the fiber concrete. Journal of Structural and Construction Engineering (JSCE) Accepted paper. (2021).
[17] Saberi Varzaneh, A. and Naderi, M. NUMERICAL AND EXPERIMENTAL STUDY OF SEMI-DESTRUCTIVE TESTS TO EVALUATE THE COMPRESSIVE AND FLEXURAL STRENGTH OF POLYMER-MODIFIED MORTARS AND THEIR ADHESION
TO THE CONCRETE SUBSTRATE. Revista Română de Materiale / Romanian Journal of Materials 2020, 50(4), 537 – 544.
[18] Saberi Varzaneh, A. and Naderi, M. Determination of shrinkage, tensile and compressive strength of repair mortars and their adhesion on the concrete substrate using "twist-off" and "pull-off" methods. Iran J Sci Technol Trans Civ Eng (2020). https://doi.org/10.1007/s40996-020-00548-w.
[19] Saberi Varzaneh, A. and Naderi, M. Using "twist-off" and "pull-off" tests to investigate the effect of polypropylene fibers on the bond of mortar/concrete and to evaluate their in-situ compressive strength. Amirkabir Civil Engineering Journal. (2021), 10.22060/CEEJ.2021.19711.7240.
[20] Iranian National Standardization Organization (INSO). Number 4982. 2017. Aggregate-Determination of Density, Relative Density (Specific Gravity) and Water Absorption of Coarse Aggregate- Test Method. (In Persian).
[21] Iranian National Standardization Organization (INSO). Number 4982. 2017. Aggregate-Determination of Density, Relative Density (Specific Gravity) and Water Absorption of Coarse Aggregate- Test Method. (In Persian).
[22] ASTM C136, Standard test method for sieve analysis of fine and coarse aggregates, West Conshohocken PA, American Society for Testing and Materials (2006).
[23] EFNARC, Specification and Guidelines for Self-Compacting Concrete. 2002. ISBN 0 9539733 4 4.
[24] ASTM C 426-70, Drying Shrinkage of Concrete Masonry Units, Section 4, Volume 04.05, ASTM Committee C-15 (2007).
[25] Leemann, A., Munch, B., Gasser, P. and Holzer, L., "Influence of Compaction on the Interfacial Transition Zone and the Permeability of
Concrete", Cement and Concrete Research,
Vol.36, pp 1425-1433, 2006.
[26] Naderi, M., Kaboodan, A. and Keshtkar, A., “Studying the permeability and strength of concretes containing silica fume, zeolite and fly ash using cylindrical chamber method and British standard”. Journal of Structural and construction engineering, Vol.7, No.3, 99.92-113, 2020.