تحلیل ارتعاش آزاد تیر رایلی با میرایی ویسکوالاستیک غیرمحلی به روش گالرکین، فضای پوچ ماتریس و بسط سری نیومن

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه صنعتی نوشیروانی بابل
چکیده
میرایی غیرمحلی در مدل‌سازی نیروهای تماسی بستر ویسکوالاستیک و نیروهای پیرامونی میراگرهای شبکه‌ای متصل به یکدیگر در سیستم‌های بزرگ مقیاس کارآمد است. دقت نتایج عددی نیز با در نظر گرفتن میرایی غیرمحلی در تیرهایی که به‌صورت یک‌بعدی تحلیل می‌شوند، بهبود می‌یابد. در تحقیقات بسیاری، از میرایی ویسکوز برای مدل­سازی میرایی، استفاده می­شود در حالی‌که مدل­های متاثر از چند پارامتر تطابق بهتری با نتایج آزمایشگاهی نشان می­دهند. در مقاله حاضر، میرایی خارجی تیر رایلی با در نظرگرفتن وابستگی نیروی استهلاکی به تاریخچه زمانی حرکت و اثرپذیری از اندرکنش­های نقاط پیرامونی، به ­صورت انتگرال‌های همگشت مورد مطالعه قرار می‌گیرد. بدین منظور، معادله حاکم بر ارتعاش آزاد محیط پیوسته پس از اعمال تبدیل لاپلاس، با اتکا بر روش گالرکین به یک سیستم گسسته تبدیل می‌شود. پس از آن، شکل مود سازه نامیرای متناظر به دلیل اقناع شرایط مرزی نیرویی و هندسی به عنوان بهترین تابع قیاسی در بسط پاسخ آزمایشی معادله دیفرانسیل انتگرالی حرکت به‌کار می‌رود. به منظور متناهی شدن انتگرال مانده وزنی و برقراری شرط پیوستگی ، معادله حاکم به شکل ضعیف نوشته می‌شود. با معرفی ماتریس‌های سختی، جرم، جرم دورانی و میرایی خارجی نسبت به مختصات تعیم‌یافته که همان مجهولات پاسخ آزمایشی هستند و برابر صفر قرار دادن دترمینان ماتریس سختی دینامیکی، مقدارهای ویژه به‌صورت مختلط و حقیقی به‌دست می‌آیند که به‌ترتیب نشاندهنده مودهای الاستیک و مودهای غیرویسکوز در سیستم‌های پایدار هستند. برای تعیین بردارهای ویژه نیز ابتدا روش حذفی گوس و فضای پوچ ماتریس معرفی می‌شود. در ادامه، روش بسط سری نیومن برای سیستم‌های متاثر از اینرسی دورانی مورد بررسی قرار می‌گیرد. در پایان، پاسخ تیر رایلی به‌صورت عددی با نتایج تحلیل تیر اویلر-برنولی مقایسه شده ‌است که در تیرهای بسیار نازک انطباق خوبی دارد، اما با تغییر ضخامت و افزایش اثر اینرسی دورانی، اختلاف پاسخ‌ها نمایان می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Free Vibration Analysis of Viscoelastic Non-locally Damped Rayleigh Beam Using Galerkin Method, Null Space of the Matrix & Neumann Series Expansion

نویسندگان English

P. Elyasi
B. Navayi Neya
A. rahmani firoozjaee
Babol Noshirvani University of Technology
چکیده English

While studying large-scale systems, non-local damping definition can beneficially model contact shear and long-range forces resulting from adjacent and non-adjacent elements in the set of interconnected dampers, damping patches and foundations which are modeled as non-local domains. If two or three dimensional systems are considered one dimensional (e.g. analyzing three dimensional beams based on Euler-Bernoulli, Rayleigh or Timoshenko Theories which simplifies the behavior of structures), the concept of non-local damping models arises to improve the accuracy of numerical results. Even though defining dissipative forces which are dependent on more parameters and quantities helpfully boost the validity of results compared to experimental cases in labs and three dimensional numerical analysis done by software, many researchers have widely employed viscous damping model to demonstrate damped behavior of the structures in the sake of simplicity. Actually viscous damping does not model accurately the dissipative behavior of real systems and practical structures often demonstrate some kind of viscoelasticity while vibration. In the recent study, external damping force at any point in the domain is influenced by the past history of velocity and long-range interactions through convolution integral over proper kernel functions. As a consequence of applying Laplace transformation and using Galerkin method, the integro-partial differential equation of Rayleigh beam as a distributed parameter system turns to an ordinary differential equation governing a discrete system with finite degrees of freedom. Galerkin method is established based on error minimization of assumed mode method and despite Rayleigh and Rayleigh-Ritz methods can suitably analyze nonconservative systems including damped beams. Corresponding undamped mode shapes of Rayleigh beam which satisfy essential boundary conditions are chosen as the best admissible functions to expand the trial response of equation of motion. In order to get continuous functions and finite weighted residual integral, the equation is presented in the weak form. Afterwards stiffness, damping and two types of mass matrices are determined with respect to generalized coordinates. To get scaled mode shapes the mass change method is considered to evaluate scaling factor, then the results are mass normalized. By equating dynamic stiffness matrix to zero and solving the resulting algebraic equation, complex and real eigenvalues are obtained which are respectively elastic and non-viscous modes in stable systems. It’s noteworthy to announce that contrasted with the viscously damped systems the degree of algebraic equation in the case of viscoelastic non-locally damped Rayleigh beam would generally be more than 2N (which N stands for total degrees of freedom). Accordingly eigenvectors are found based on Gaussian elimination method and null space of the dynamic stiffness matrix. Additionally, Neumann series expansion is developed to determine eigenvectors of vibrating systems effected by inertia. Finally, numerical results of Rayleigh and Euler-Bernoulli beams are compared. Very thin Rayleigh beams are verified and show great accuracy but when the thickness increases and inertial effect becomes bold, results of Rayleigh and Euler-Bernoulli beams are not matched anymore. Furthermore it’s understood from the graphs and tables that when the characteristic parameter of nonlocality and relaxation constant increase and tend to infinity, the nonlocal and non-viscous effects decline.

کلیدواژه‌ها English

Keywords: Nonlocal viscoelastic damping
Neumann series expansion
Galerkin method
Integro-partial differential equation
Null space of the matrix
1-Munteanu L., Chiroiu V., Dumitriu D., Baldovin D. & Chiroiu C. 2009 On the Eigenfrequency Optimization of Euler-Bernoulli Beams with Nonlocal Damping Patches. Revue Roumaine des Sciences Techniques - Série de Mécanique Appliquée, 50, 53-66.
2-Yu ̈ksel S. & Dalli U. 2005 Longitudinally Vibrating Elastic Rods with Locally and Non-Locally Reacting Viscous Damper. Shock & Vibration: IOS Press, 12, 109-118.
3-Adhikari S., Friswell M. I. & Lei Y. 2007 Modal Analysis of Non-viscously Damped Beams. Journal of Applied Mechanics, 74, 1026-1030.
4-Karličić D., Murmu T., Adhikari S. & McCarthy M. 2016 Non-local Structural Mechanics. John Wiley & Sons: Mechanical engineering and solid mechanics series, Hoboken.
5-Zhang P. D., Lei Y. J. & Shen Z. B. 2018 Semi-Analytical Solution for Vibration of Nonlocal Piezoelectric Kirchhoff Plates Resting on Viscoelastic Foundation. Journal of Applied and Computational Mechanics, 4(3), 202-215.
6-Adhikari S., Lei Y. & Friswell M. I. 2005 Dynamics of Non-Viscously Damped Distributed Parameter Systems. Structural Dynamics and Materials Conference, Austin, Texas.
7-Adhikari S. 2000 Damping Models for Structural Vibration. A Dissertation Submitted to the University of Cambridge, Trinity College.
8-Flu ̈gge W. 1975 Viscoelasticity. Springer, Second edition, Berlin.
9-Friswell M. I., Adhikari S. & Lei Y. 2007 Vibration Analysis of Beams with Non-local Foundations Using Finite Element Method. International Journal of Solids and Structures, 71, 1365-1386.
10-Lei Y., Friswell M. I. & Adhikari S. 2006 A Galerkin Method for Distributed Systems with Non-local Damping. International Journal of Solids and Structures, 43, 3381-3400.
11-Gonzalez-Lopez S. & Fernandez-Saez J. 2012 Vibrations in Euler-Bernoulli Beams Treated with Non-Local Damping Patches. Computers and Structures, 108-109, 125-134.
12-Fyodorov V. S., Sidorov V. N. & Shepitko E. S. 2018 Nonlocal damping consideration for the computer modelling of linear and nonlinear systems vibrations under the stochastic loads. IOP Conf. Series: Materials Science and Engineering, 456, 1-8.
13-Shepitko E. S. & Sidorov V. N. 2019 Defining of Nonlocal Damping Model Parameters Based on Composite Beam Dynamic Behavior Numerical Simulation Results. IOP Conf. Series: Materials Science and Engineering, 675, 1-8
14-Zhao C., Zhao C. & Zhong C. 2020 the Global Attractor for a Class of Extensible Beams with Nonlocal Weak Damping. Discrete and Continuous Dynamical Systems Series B, 25(3), 935-955.
15-Shen R., Qian X., Zhou J. & Lee C.L. 2021 A Time Integration Method Based on the Weak Form Galerkin Method for Non-viscous Damping Systems. Mechanical Systems and Signal Processing, 151, 1-18.
16-Ge X., Gong J., Zhao Ch., Azim I., Yang X. & Li Ch. 2022 Structural Dynamic Response of Building Structures with Non-viscous Dampers under Kanai-Tajimi Spectrum Excitation. Journal of Sound and Vibration, 517, 1-15.
17-La ́zaro M, 2018 Eigensolution of Nonviscously Damped Systems Based on the Fixed-Point Iteration. Journal of Sound and Vibration, 418, 100-121.
18- Fyodorov V. S., Sidorov V. N. & Shepitko E. S. 2020 Computer simulation of composite beams dynamic behavior. Materials Science Forum, 974, 687-692.
19-Rao S. S. 2007 Vibration of Continuous Systems. John Wiley & Sons, New Jersey, USA.
20-Nguyen Y. R. 2018 Comparative Spectral Analysis of Flexible Structure Models: The Euler-Bernoulli Beam Model, The Rayleigh Beam Model and the Timoshenko Beam Model. Master's Theses and Capstone, University of New Hampshire, Durham.
21- Zienkiewicz O. C. & Taylor R. L. 2000 The Finite Element Method. Butter Worth-Heinemann, Fifth edition, Vol. 1, Woburn, Massachusetts, United States of America.
22-Chopra A. k. 2012 Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pearson Education, Fourth edition, Bergen County, New Jersey, United States of America.
23-Strang G. 1988 Linear Algebra and Its Applications. Thomson Learning. Third edition, United States of America.
24- Choi S. K., Grandhi R. & Canfield R. A. 2006 Reliability-based Structural Design. Springer. First edition, United States of America.