بکارگیری آزمون انتقال اصطکاک برای بررسی مقاومت فشاری ملات های تعمیری و تأثیر پیش فشار بر چسبندگی بین ملات و بتن پایه

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دکتری، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران
2 استاد، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران
چکیده
با توجه به آسیب های وارده به سازه‌های بتنی که ممکن است به دلیل عوامل مختلفی پدید آید، موادی برای تعمیر و تقویت این سازه‌ها مورد نیاز است. معمولاً برای ترمیم و تعمیر سازه های بتنی از ملات‌های پایه سیمانی استفاده می‌گردد. جمع شدگی و تراکم نامناسب ملات های تعمیری می تواند باعث کاهش مقاومت چسبندگی بین ملات و بستر بتنی گردد. فصل مشترک ملات و بستر دارای اهمیت فراوانی می باشد، زیرا عدم تراکم مناسب باعث ایجاد حفرات ریز بین سطح مشترک شده و یکی از عوامل اصلی در کاهش مقاومت چسبندگی می باشد. لذا در این تحقیق با اعمال پیش فشارهای متفاوت روی ملات تعمیری، تاثیر آن بر مقاومت چسبندگی برشی و کششی بین ملات تعمیری و بستر بتنی با استفاده از آزمون های "انتقال اصطکاک" و "کشیدن از سطح" مورد بررسی قرار گرفته است. برای ساخت ملات های تعمیری از نسبت سیمان به ماسه برابر 1 به 3 و نسبت آب به سیمان نیز برابر 5/0 استفاده شده است. همچنین تاثیر عمل آوری بر کاهش جمع شدگی ملات ها ارائه گردیده است. در ادامه نیز برای ارزیابی مقاومت فشاری درجای ملات های سیمانی از آزمون های نیمه مخرب "انتقال اصطکاک" و "کشیدن از سطح" استفاده شده و با اندازه گیری ضریب همبستگی و رسم نمودارهای کالیبراسیون، معادلات تبدیل قرائت های حاصل از آزمون های نیمه مخرب به مقاومت فشاری ملات ها ارائه شده است. در انتها نیز با استفاده از نرم افزار اجزا محدود ABAQUS ترکها و تنشهای بوجود آمده در نمونه ها ارائه شدند. نتایج حاصله بیانگر این می باشد که اعمال فشار 5/0 کیلوگرم بر سانتی مربع باعث افزایش مقاومت چسبندگی برشی و کششی بین لایه تعمیری و بتنی در سن 90 روز به ترتیب برابر 1/30 و 4/31 درصد گردیده است. با استفاده از معادلات y=10x-0.805 و y=17.32x+1.83 به ترتیب می توان با جایگذاری نتایج حاصل از آزمون های "انتقال اصطکاک" و "کشیدن از سطح" در معادله به جای عبارت x، مقاومت فشاری ملات تعمیری را تعیین نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Using Friction-Transfer test to Study the Compressive Strength of Repair Mortars and the Effect of Prestress on the Adhesion between Mortar and Concrete Substrate

نویسندگان English

Ali Saberi Varzaneh 1
Mahmood Naderi 2
1 Ph.D, Imam Khomeini International University, Qazvin
2 Professor, Imam Khomeini International University, Qazvin, Iran.
چکیده English

Given the damages to concrete structures caused by different factors, some materials should be used to repair and strengthen them. In general, cement-based mortars are used to repair concrete structures. The shrinkage and inappropriate compaction of repair mortars can reduce the bond strength between mortar and concrete substrate. the shrinkage is an important problem that has an adverse effect on the adhesion between repair mortar and concrete substrate. The shrinkage can create tensile stress inside mortars, leading to cracking due to their low tensile strength. The mortar-substrate interface is of great importance since the improper compaction can create fine pores and lower the bond strength.The suitable compaction of repair mortar while applying it on the concrete substrate is an effective factor in increasing the adhesion between the mortar and concrete. The mortar-substrate interface is of great importance since the improper compaction can create fine pores and lower the bond strength. Therefore, in this study, different prestresses were imposed on repair mortar to evaluate their effects on the shear and tensile bond strength between repair mortar and concrete substrate using friction-transfer and pull-off tests. The role of curing in reducing the shrinkage of mortars was also evaluated. The semi-destructive friction-transfer and pull-off tests were then used to assess the in-situ compressive strength of cement-based mortars. By calculating the correlation coefficient and plotting the calibration curves, relationships were provided to convert the measurements obtained from the semi-destructive tests to the compressive strength of the mortars. Eventually, the cracks and stresses that appeared in the specimens were presented using finite element ABAQUS software. The obtained results indicated the effect of prestress on increasing the shear and tensile bond strength between the concrete substrate and repair layers. Moreover, a high correlation coefficient was found between the measurements of the in-situ and laboratory tests. A good agreement was also observed between the finite element modeling and the experimental results. In some researches, friction transfer and pull-off tests have been used to compare the compressive strength of fiber-reinforced mortars and polymer-modified mortars with the results of the above tests, which has resulted in a very high correlation coefficient between the results.

Imposing a prestress of 0.5 kg/cm2 resulted in an increase of 30.1% and 31.4%, respectively, in the shear and tensile bond strength between the repair mortar and the concrete substrate at the age of 90 days. Imposing a prestress of 0.1 kg/cm2 resulted in an increase by 7.5% and 5.8%, respectively, in the shear and tensile bond strength between the repair mortar and the concrete substrate at the age of 90 days. Keeping the specimen in the free space resulted in 64% more shrinkage compared to the one cured in water. The friction-transfer and pull-off test results had a correlation coefficient of more than 0.98 with the repair mortar's compressive strength. Therefore, these tests can be used to evaluate the in-situ compressive strength of mortars. The compressive strength of repair mortar can be calculated by substituting x for the friction-transfer and pull-off test results, respectively, in the equations y=10x-0.805 and y=17.32x+1.83.

کلیدواژه‌ها English

Friction transfer
Prestress
Bond
Mortar
[1] Araujo, D.L. Danin, A.R. Melo, M.B. and Rodrigues, P.F. Influence of steel fibers on the reinforcement bond of straight steel. Revista IBRACON de Estruturas e Materriais - RIEM, v.6, n.2, (2013).
[2] Neville, A.M. Properties of concrete, fifth ed., Harlow, United Kingdom, (2012).
[3] G.P., Tilly, J., Jacobs, “Concrete repairs: Observations on performance in service and current practice”. Watford, UK, (2007).
[4] G., Martinola, H., Sadouki, F., Wittmann, “Numerical model for minimizing the risk of damage in a repair system”, J. Mater. Civ. Eng, 13, 121–129, (2011).
[5] W. Zhang, M. Zakaria, Y. Hama, Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete, Construction and Building Materials, 49, 500-510 (2013).
[6] M.F.bin, .H.M. Zain, The study on the physical properties of surface layer concrete under the influence of medium temperature environments, Kyushu university, Ph.D thesis, (1996).
[7] H., Beushausen, M., Alexander, “Localised strain and stress in bonded concrete overlays subjected to differential shrinkage”, Mater. Struct, 40, 189–199 (2007).
[8] Naderi, M. Adhesion of Different Concrete Repair Systems Exposed to Different Environments, J. Adhesion. 84 78-104. https://doi.org/10.1080/00218460801888433, (2008).
[9] Maryoto, A. The Effect of Compaction Method on Compressive Strength of Self Compacting Concrete in Laboratory. 1st International Conference on Material Science and Engineering for Sustainable Rural Development, AIP Conf. Proc. 2094, 020002-1 – 020002-7, (2019).
[10] Tuncan, M., Arioz, O., Ramyar, K., and Karasu, B. Effect of Compaction on Assessed Concrete Strength. pp. 847-853, (2014).
[11] Junior, R. A., Lima, M. G., and Oliveira, A. Influence of different compacting method on concrete compressive strength. Journal of Materials, Rio de Janeiro, vol. 23, no.3, (2018).
[12] ASTM C808/C805M-18. Standard Test Method for Rebound Number of Hardened Concrete, ASTM International, West Conshohocken, PA, (2018).
[13] ASTM C597-16. Standard Test Method for Pulse Velocity through Concrete, ASTM International, West Conshohocken, PA, (2016).
[14] ACI Committee 214, Report 214.4R-03. Guide for Obtaining Cores and Interpreting Compressive Strength Results, American Concrete Institute, (2003).
[15] ASTM C900-15. Standard Test Method for Pullout Strength of Hardened Concrete, ASTM International, West Conshohocken, PA, (2015).
[16] Masi. A., Digrisolo. A., Santarsieo. G. arsiero, “Experimental evaluation of drilling damage on the strength of cores extracted from RC buildings. in Proceedings of World Academy of Science, Engineering and Technology, 7(7). p. 749, (2013).
[17] Naderi, M. “Friction-Transfer Test for the Assessment of in-situ Strength & Adhesion of Cementitious Materials”, Construction & Building Materials, 19 (6) 454-459, (2005).
[18] Naderi M. New Twist-Off Method for the Evaluation of In-Situ Strength of Concrete, Journal of Testing and Evaluation. 35(6). ISSN: 0090-3973, (2007).
[19] ASTM C1583. Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull-off method), West Conshohocken PA, American Society for Testing and Materials, (2004).
[20] Varzaneh, Ali Saberi, and Mahmood Naderi. "Determination of Shrinkage, Tensile and Compressive Strength of Repair Mortars and Their Adhesion on the Concrete Substrate Using" Twist-off" and" Pull-off" Methods." Iranian Journal of Science and Technology, Transactions of Civil Engineering (2020): 1-19.
[21] Varzaneh, Ali Saberi, and Mahmood Naderi. "NUMERICAL AND EXPERIMENTAL STUDY OF SEMI-DESTRUCTIVE TESTS TO EVALUATE THE COMPRESSIVE AND FLEXURAL STRENGTH OF POLYMER-MODIFIED MORTARS AND THEIR ADHESION TO THE CONCRETE SUBSTRATE." Revista Română de Materiale/Romanian Journal of Materials 50.4 (2020): 537-544.
[22] Saberi Varzaneh, Ali, and Mahmood Naderi. "Study of bond strength between polymer-modified mortars/concrete and their mechanical properties using “friction-transfer” and “pull-off” methods." Mechanics of Advanced Composite Structures‎ (2021).
[23] Saberi Varzaneh, Ali, and Mahmood Naderi. "Experimental and Finite Element Study to Determine the‎ Mechanical Properties and Bond Between Repair Mortars and‎ Concrete Substrates." Journal of Applied and Computational Mechanics (2020).
[24] Naderi, Mahmood, and Ali Saberi Varzaneh. "Studying the effect of shrinkage on the bond strength of mortars, applied to substrate concrete, using “Friction-transfer” and “Pull-off” methods." Journal of Structural and Construction Engineering (2021).
[25] VARZANEH, ALI SABERI, and MAHMOOD NADERI. "STUDY OF BOND STRENGTH BETWEEN FIBER-REINFORCED-MORTAR/STEEL AND THEIR MECHANICAL PROPERTIES USING PUSH-OUT, TWIST-OFF AND PULL-OFF METHODS." Revista Română de Materiale/Romanian Journal of Materials 51.2 (2021): 228-238.
[26] Saberi Varzaneh. A., and Naderi. M. Finite Element and Experimental Investigation of In-situ compressive strength of Fiber-Reinforced Mortar and the Effect of Fibers on the Adhesion of Mortar/Steel. advanced design and manufacturing technology. Accepted article. (2021).
[27] Saberi, Varzaneh Ali, and Mahmood Naderi. "Investigation of In-Situ Compressive Strength of Fiber-Reinforced Mortar and the Effect of Fibers on the Adhesion of Mortar/Steel." INTERNATIONAL JOURNAL OF ADVANCED DESIGN AND MANUFACTURING TECHNOLOGY (2021): 37-48.
[28] Saberi Vaezaneh, Ali, and Mahmood Naderi. "Analyzing the Effect of Polypropylene Fibers on Compressive Behavior, Shrinkage and Bond Strength of Repair Mortars/Concrete Substrate." Journal of Structural and Construction Engineering (2021).
[29] Naderi, Mahmood, and Ali Saberi Varzaneh. "Determination of Compressive and Flexural Strengths of In-situ Pozzolanic Concrete Containing Polypropylene and Glass Fibers Using" Twist-off" Method." Modares Civil Engineering journal 20.5 (2020).
[30] VARZANEH, ALI SABERI, and MAHMOUD NADERI. "COMPARING THE RESULTS OBTAINED FROM IN-SITU METHODS FOR DETERMINING THE STRENGTH OF THE CEMENT MORTARS." Journal of Critical Reviews 7.4 (2020): 555-564.
[31] Varzaneh, Ali Saberi, and Mahmoud Naderi. "Determination of mechanical properties of repair mortars using in situ methods under different curings." EUREKA: Physics and Engineering, (1) (2020): 3-18.
[32] Naderi, Mahmood, Ali Saberi Varzaneh, and Alireza Esmaeli. " Assessment of the application "twist-off" method for determining the in situ compressive and flexural strengths in the fiber concrete." Journal of Structural and Construction Engineering (2021).
[33] Saberi Varzaneh, Ali, and Mahmoud Naderi. "Numerical and experimental study of in-situ methods to evaluate the mechanical properties of fiber-reinforced mortars." AUT Journal of Civil Engineering (2021).
[34] Saberi Varzaneh, Ali, and Mahmoud Naderi. "Numerical and experimental study of in-situ methods to evaluate the mechanical properties of fiber-reinforced mortars." AUT Journal of Civil Engineering (2021).
[35] ASTM C136, Standard test method for sieve analysis of fine and coarse aggregates, West Conshohocken PA, American Society for Testing and Materials (2006).
[36] ASTM C127, Standard test method for density, relative density (specific gravity), and absorption of fine aggregate, West Conshohocken PA, American Society for Testing and Materials (2012).
[37] ASTM C128, Standard test method for relative density (specific gravity) and absorption of coarse aggregate, West Conshohocken PA, American Society for Testing and Materials (2015).
[38] BHRC, The National Method for Concrete Mix Design, Building and Housing Research Center, BHRC Publication No.S-47, (2008).
[39] C. ASTM C157, Test method for length change of hardened hydraulic cement mortar and concrete, West Conshohocken PA, American Society for Testing and Materials (2008).
[40] ASTM C490, Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete, West Conshohocken PA, American Society for Testing and Materials (2011).