مقاومت فشاری و کششی بتن دارای مواد افزودنی معدنی پس از قرار گرفتن در معرض دمای بالا

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشکده مهندسی عمران دانشگاه صنعتی نوشیروانی بابل
چکیده
قرارگیری بتن در معرض دمای بالا در شرایط مختلفی اتفاق می­افتد که از جمله­ی آن­ها می­توان به آتش­ سوزی در ساختمان­ها و یا کاربرد بتن در سازه ­هایی مانند نیروگاه­ ها اشاره نمود. در چنین شرایطی، تخمین مقاومت پسماند بتن پس از آتش ­سوزی و یا دستیابی به نوعی از بتن که با تجربه­ ی سیکل­ های متعدد دمایی دچار تغییرات کمی در مشخصات شود اهمیت کاربردی فراوان دارد. هدف از مطالعه ­ی حاضر بررسی آزمایشگاهی اثر کاربرد میکروسیلیس و خاکستر بادی به عنوان دو ماده­ ی افزودنی معدنی بر روی مقاومت پسماند بتن پس از قرار گرفتن در معرض حرارت بالا می­باشد. با کاربرد 19 طرح اختلاط، مجموعه­ ای از 570 نمونه­ ی استوانه­ ای با نسبت­ های آب­ به ­سیمان بین 0.35 و 0.65، درصد جایگزینی سیمان بین 0 و 15 برای میکروسیلیس و بین 0 و 30 برای خاکستر بادی ساخته شد. این نمونه­ ها در کوره­ ی الکتریکی قرار گرفته و مقاومت­ فشاری و کششی آن­ها در شرایط کنترل و بعد از قرارگیری در دماهای 200، 400، و 600 درجه در زمان­ بندی­های مختلف 2 ساعته، 12 ساعته و 24 ساعته ارزیابی گردید. نتایج نشان داد که مقاومت فشاری و کششی نمونه­ های قرار گرفته در معرض دمای 200 درجه دچار افت مقاومت قابل توجهی نگردید، ولی کاهش مقاومت در اثر قرارگیری در معرض دمای 400 درجه و 600 درجه به وضوح مشاهده شد. کاربرد میکروسیلیس منجر به تغییر محسوسی در مقاومت فشاری پسماند نمونه­ ها نگردید ولی مقاومت پسماند کششی نمونه­‌ها را کاهش داد. کاربرد خاکستر بادی نیز در جایگزینی نزدیک به 30 درصد منجر به افزایش مقاومت فشاری پسماند شده اما مقاومت کششی پسماند نمونه­ ها را کاهش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Residual Compressive and Tensile Strength of Concrete Containing Supplementary Cementitious Materials after Exposure to Elevated Temperatures

نویسندگان English

Mohammad Hossein Mahmoudi
Mohammad Reza Davoodi
Hossein Yousefpour
Faculty of Civil Engineering, Babol Noshirvani University of Technology
چکیده English

A significant number of engineering structures around the world are exposed to fire on a daily basis. The most important effect of fire on the structure is elevated temperatures, which may reach more than 1000 degrees Celsius and cause not only thermal stresses and deformations but also diminished mechanical properties of materials comprising the structure. Fire-related collapses have been observed in numerous structural fires. However, many reinforced concrete structures exposed to fire do not demonstrate notable apparent damage and survive despite having experienced elevated temperatures before the fire is put out. Estimating the residual strength of such structures is of critical importance when deciding whether such structures can be safely used after fire. Moreover, in many industrial applications, there is a need to concrete that can withstand repeated long-term cycles of elevated temperatures without diminished mechanical properties. The objective of this paper is to investigate the effects of silica fume and fly ash as two widely used supplementary cementitious materials on the residual strength of concrete exposed to elevated temperatures and evaluate while such materials can be of benefit in improving the strength retention in case of heat exposure. Using 19 mix designs, a series of 570 concrete cylinders was fabricated using different water to cement ratios (0.35, 0.5, and 0.65), silica fume replacement ratios (0, 10, and 15 percent), and fly ash replacement ratios (0, 10, 20, and 30 percent). The specimens were cured in water for 56 days, after which they were placed in a rate-controlled large-scale electrical furnace, and their residual compressive and tensile strengths were measured before heat, and after heat exposure for 2-, 12-, and 24-hour heating cycles with temperatures reaching 200, 400, and 600 degrees Celsius. To eliminate the risk of explosive spalling, all specimens were preheated at a temperature of 100 degrees for 24 hours before the main heating cycle. Results showed that the compressive and tensile strengths did not reduce noticeably after exposure to 200 degrees but demonstrated a significant drop after exposure to 400- and 600-degree cycles. In many cases, the residual compressive and tensile strengths of specimens were found to be smaller than those predicted in previous studies. The square root equation widely used in the literature was found to provide a reasonable lower-bound estimate of the residual splitting tensile strength of concrete from the residual compressive strength; however, a linear trend was identified to provide a more accurate estimate for the results of this study. Moreover, due to less scatter, the splitting tensile strength was found to be a better indicator of heat damage in the structure than the compressive strength. The use of silica fume did not result in a meaningful trend in the residual compressive strength but reduced the residual tensile strength of specimens. Fly ash, on the other hand, could increase the residual compressive strength of the specimens but reduces the residual tensile strength. The results suggest that generally, and with few exceptions, these two supplementary cementitious materials are not recommendable choices for improving the strength retention of concrete in case of heat exposure.

کلیدواژه‌ها English

Silica Fume
Fly ash
Fire
Elevated temperature
residual strength
Buchanan A. and A. Abu. 2017 Structural Design for Fire Safety, West Sussex, U.K.: John Wiley & Sons.
Neville A. 2012 Properties of Concrete, London: Wiley.
Hooton, R.D., 1993. Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack, freezing and thawing, and alkali-silica reactivity. ACI Materials Journal, 90(2), pp.143-151.
Iravani, S., 1996. Mechanical properties of high-performance concrete. ACI Materials Journal, 93(5), pp.416-426.
Hertz, K.D., 1992. Danish investigations on silica fume concretes at elevated temperatures. ACI Materials Journal, 89(4), pp.345-347.
Felicetti, R. and Gambarova, P.G., 1998. Effects of high temperature on the residual compressive strength of high-strength siliceous concretes. ACI Materials Journal, 95, pp.395-406.
Morsy, M.S., Al-Salloum, Y.A., Abbas, H. and Alsayed, S.H., 2012. Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures. Construction and Building Materials, 35, pp.900-905.
Siddique, R. and Kaur, D., 2012. Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures. Journal of Advanced Research, 3(1), pp.45-51.
Shah, A.H., Sharma, U.K., Roy, D.A. and Bhargava, P., 2013. Spalling behaviour of nano SiO2 high strength concrete at elevated temperatures. In MATEC Web of Conferences (Vol. 6, p. 01009). EDP Sciences.
Hussin, M.W., Bhutta, M.A.R., Azreen, M., Ramadhansyah, P.J. and Mirza, J., 2015. Performance of blended ash geopolymer concrete at elevated temperatures. Materials and Structures, 48(3), pp.709-720.
Dabbaghi, F., Dehestani, M., Yousefpour, H., Rasekh, H. and Navaratnam, S., 2021. Residual compressive stress–strain relationship of lightweight aggregate concrete after exposure to elevated temperatures. Construction and Building Materials, 298, p.123890.
British Standard. 2004. Eurocode 2: Design of Concrete Structures- Part 1-2: General Rules-Structural Fire Design, Brussels, Belgium: European Committee for Standardization.
Matsuzawa, K., Kitsutaka, Y., Abe, M., Kasami, H., Tayama, T. and Nishi, H., 2016. Effects of Exposure Term on the Strength and Elasticity of Concrete Subjected to Elevated Temperature up to 175 C. In Key Engineering Materials (Vol. 711, pp. 519-524). Trans Tech Publications Ltd.
Shill, S.K., Al-Deen, S., Ashraf, M. and Hossain, M.M., 2020. Residual properties of conventional concrete repetitively exposed to high thermal shocks and hydrocarbon fluids. Construction and Building Materials, 252, p.119072.
ASTM International. 2019. ASTM C136: Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, West Conshohocken, PA: ASTM.
ASTM International. 2018. ASTM C33: Standard Specification for Concrete Aggregates, Conshohocken, PA: ASTM.
American Concrete Institute. 2002. ACI 211.1-91: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, Farmington Hills, MI: ACI.
ASTM International. 2007. ASTM C192: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, West Conshohocken, PA: ASTM.
ASTM International. 2012. ASTM C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens، West Conshohocken, PA: ASTM.
ASTM International. 2011. ASTM C496: Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, West Conshohocken, PA: ASTM.
Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C., 2006. Residual stress–strain relationship for concrete after exposure to high temperatures. Cement and concrete research, 36(10), pp.1999-2005.
Wight J. 2015. Reinforced Concrete: Mechanics and Design (7th Edition), Hoboken, New Jersey: Pearson.
Chan, S.Y.N., Peng, G.F. and Anson, M., 1999. Fire behavior of high-performance concrete made with silica fume at various moisture contents. ACI Materials Journal, 96(3), pp.405-40.