بررسی عملکردی استفاده از میراگرهای فلزی جاری شونده U-شکل در ساختمان‌های بتنی نامنظم در ارتفاع

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار دانشکده فنی مهندسی شرق گیلان، گروه عمران، دانشگاه گیلان، رودسر، گیلان، ایران.
2 کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد رامسر.
چکیده
این مقاله به بررسی تاثیر میراگرهای فلزی جاری شونده U-شکل در مقاوم سازی ساختمان­های بتنی متداول خمشی متوسط نامنظم در ارتفاع می­پردازد. پس از طراحی قاب­های ضعیف کاهش نیاز لرزه­ای سازه­های مقاوم سازی شده مطابق با ضوابط تحلیل غیرخطی سازه های بتنی با مدلسازی در نرم افزار PERFORM 3D بررسی شده است. با انجام تحلیل­های تاریخچه زمانی دو بعدی، تحت رکوردهای دور از گسل، تغییر مکان طبقه آخر، دریفت طبقات، برش پایه، و سطح عملکرد قاب­ها، ارزیابی گردید. مطابق نتایج بدست آمده، مقدار دریفت و تغییرمکان طبقات در قاب مقاوم سازی شده با میراگر تا حدود 30 درصد کاهش می­یابد. همچنین سطح عملکرد نیز با استفاده از میراگر به نحو چشمگیری بهبود می­یابد. کاربرد میراگر تاثیر چندانی بر کاهش مقدار برش پایه نداشته و در برخی موارد تا حدود 10 درصد، برش پایه در قاب مقاوم سازی شده با میراگر در مقایسه با قاب بدون میراگر افزایش می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Performance evaluation of U-shaped metallic-yielding damper in RC frames irregular in elevation

نویسندگان English

Taha Bakhshpoori 1
Mona Masoum Nejad 2
1 Faculty of Technology and Engineering, Department of Civil Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran.
2 M.Sc. Structural Engineering, Islamic Azad University, Branch of Ramsar, Ramsar, Iran.
چکیده English

Having a long history of seismicity and experienced destructive and deadliest earthquakes make Iran one of the vulnerable countries against earthquakes. Based on the seismic hazard zoning map presented in the Iranian seismic code (2800 provisions), more than 90% of Iranian cities are located in areas with high or very high seismic hazard zones. On the other hand expansion of urbanization in recent decades almost comprises reinforced concrete (RC) buildings. Many of these RC structures constructed in accordance with codes that did not mandate adequate detailing and reinforcement for seismic protection, may have already suffered damage since their erection, due to insufficient maintenance, earthquake activity, or other natural hazards. Therefore providing appropriate solutions for the rehabilitation of such structures has always been considered essential. Metallic energy dissipators have been grown experimentally and theoretically almost for steel structures. U-shaped metallic-yielding damper as one of the most well-known metallic energy dissipators has also developed as a lateral-load resisting system for strengthening existing steel frames. Experimental and theoretical results showed that U-shaped metallic dampers can operate with large displacements in the inelastic range and dissipate energy through the plastic deformation of the steel. The purpose of this study is to take potential advantages of this system to strengthen deficient RC structures. To the best of the authors’ knowledge, this issue has rarely been considered, most of which are limited to small experimental studies. Therefore, it can be useful to study this issue numerically at the real size structural level. In this regard, three RC intermediate moment frames in 4, 6, and 8 stories and irregular in elevation are considered. Irregularity is considered by a setback in elevation of the frames as a special type of irregularity with considerable effect on seismic performance. Frames were first designed deficiently by SAP2000 software according to the provisions of the Iranian national building code and Iranian seismic code for the intermediate reinforced concrete moment-resisting frames. Then the frames strengthen by adding U-shaped metallic-yielding dampers together with inverted V-braces. The nonlinear dynamic time-history analysis is performed on all frames subjected to three far source input motions utilizing PERFORM 3D software. Nonlinear specifications of beams and columns are considered by assigning plastic hinges to them in addition to defining nonlinearity for the dampers. The results of roof displacement, base shear, inter-story drifts, and performance of frames at the life safety structural performance level are monitored for both cases with and without dampers. The use of U-shaped metallic dampers has always reduced significantly the maximum lateral displacement of the buildings. On average, under the three records of Imperial Valley, Manjil, and Tabas, the reduction is obtained as 32, 33, and 22 for 4, 6, and 8 story frames, respectively. Such a significant reduction is also visible in the inter-story drifts. . No major effect on the maximum base shear force is observed and even in some cases, it is increased up to 10%. Failure of frames reduced by transferring nonlinearity of elements to the dampers and seismic performance assessment indicates that dampers strengthen frames to almost satisfy the requirements of the life safety level.

کلیدواژه‌ها English

Reinforced concrete structure
irregularity in elevation
U-shaped metallic-yielding damper
Nonlinear Analysis
Time history analysis
[1] Shen H., Zhang R., Weng D., Gao C., Luo H., & Pan, C. 2017 Simple design method of structure with metallic yielding dampers based on elastic–plastic response reduction curve. Engineering Structures, 150, 98-114.
[2] Kelly J. M., Skinner R. I., & Heine A. J. 1972 Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bulletin of NZ Society for Earthquake Engineering, 5(3), 63-88.
[3] Skinner R. I., Kelly J. M. & Heine A. J. 1974 Hysteretic dampers for earthquake‐resistant structures. Earthquake Engineering and Structural Dynamics, 3(3), 287-296.
[4] Aguirre M. & Roberto Sánchez A. 1992 Structural seismic damper. Journal of Structural Engineering, 118(5), 1158-1171.
[5] Tagawa H. & Gao J. 2012 Evaluation of vibration control system with U-dampers based on quasi-linear motion mechanism. Journal of Constructional Steel Research, 70, 213-225.
[6] Alehashem S. M. S., Keyhani A. & Pourmohammad H. 2008 Behavior and performance of structures equipped with ADAS and TADAS dampers (A comparison with conventional structures). In Proc., 14th World Conf. Earthquake Engineering, Beijing, Chinese Association of Earthquake Engineering.
[7] De Matteis G., Formisano A. & Mazzolani F. M. 2009 An innovative methodology for seismic retrofitting of existing RC buildings by metal shear panels. Earthquake Engineering and Structural Dynamics, 38(1): 61–78.
[8] Durucan C. & Dicleli M. 2010 Analytical study on seismic retrofitting of reinforced concrete buildings using steel braces with shear link. Engineering Structures, 32(10): 2995–3010.
[9] Sahoo D. R. & Rai D. C. 2010 Seismic strengthening of non-ductile reinforced concrete frames using aluminum shear links as energy dissipation devices. Engineering Structures, 32(11): 3548–3557.
[10] Sahoo D. R. & Rai D. C. 2013 Design and evaluation of seismic strengthening techniques for reinforced concrete frames with soft ground story. Engineering Structures, 56: 1933–1944.
[11] Oinam R. M. & Sahoo D. R. 2017 Seismic rehabilitation of damaged reinforced concrete frames using combined metallic yielding passive devices. Structural Infrastructures Engineering, 13(6): 816–830.
[12] Oinam R. M. & Sahoo, D. R. 2019 Using metallic dampers to improve seismic performance of soft-story RC frames: Experimental and numerical study. Journal of Performance of Constructed Facilities, 33(1), 04018108.
[13] Junaid A., Ahmad N. & Alam B. 2020 Response modification factor of haunch retrofitted reinforced concrete frames. Journal of Performance of Constructed Facilities, 34(6), 04020115.
[14] Deepsikha Ch. & Singh Y. 2014 Performance-based design of RC frame buildings with metallic and friction dampers. Journal of the Institution of Engineers (India): Series A, 95(4), 239-247.
[15] Madheswaran C. K. & Rama Rao GV. 2021 Development of Retrofitting Technique for Seismically Vulnerable Open Ground Storey Reinforced Concrete Buildings. Experimental Techniques, 1-23.
[16] Golmoghany M. Z. & Zahrai S. M. 2021 Improving seismic behavior using a hybrid control system of friction damper and vertical shear panel in series. Structures, 31, 369-379.
[17] Dolce M., Filardi B., Marnetto, R. & Nigro, D. 1996 Experimental tests and applications of a new biaxial elasto-plastic device for the passive control of structures. Special Publication, 164, 651-674.
[18] Bagheri S., Barghian M., Saieri, F. & Farzinfar A. 2015 U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper. Structures 3, 163-171.
[19] Instruction for Seismic Rehabilitation of Existing Buildings, No. 360, 2014, Office of Deputy for Strategic Supervision, Department of Technical Affairs. (In Persian).
[20] ASCE/SEI 7-10: Minimum Design Loads for Buildings and Other Structures, 2010, American Society of Civil Engineers.