روشی نوین مبتنی بر شبکه عصبی بدون بازرس عمیق جهت شناسایی آسیب های کلی و موضعی سازه های عمرانی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه علم و صنعت ایران
چکیده
سازه های مهندسی عمران به دلیل قرار گرفتن در معرض شرایط جوی و بارگذاری های مختلف در طول عمر خود ممکن است دچار آسیب های گوناگون شوند به همین دلیل پایش سلامت سازه همواره جز مسائل مورد توجه مهندسین عمران بوده است. در این مقاله یک روش نوین جهت شناسایی آسیب های موضعی و کلی سازه های عمرانی با استفاده از شبکه عصبی بدون بازرس عمیق ارائه می شود. در این روش ابتدا سازه بدون آسیب تحت اثر بارهای محیطی قرار می گیرد. پاسخ های سازه تحت اثر بارهای محیطی به قطعات کوچکتری تقسیم بندی می شوند و با استفاده از تبدیل فوریه گسسته به حوزه فرکانس منتقل می شوند. یک شبکه عصبی بدون بازرس عمیق که از چند لایه ماشین بولتزمن مجزا تشکیل شده است با استفاده از پاسخ های سازه بدون آسیب آموزش داده می شود. شبکه عصبی بدون بازرس عمیق پس از آموزش قادر به شناسایی ویژگی های معنادار موجود در پاسخ های سازه است. در مرحله بعد سازه در وضعیت نامشخص از نظر سلامت مورد بررسی قرار می گیرد. پاسخ های سازه در وضعیت مجهول در برابر بارهای محیطی جمع آوری شده و با استفاده از شبکه عصبی که قبلا آموزش دیده، ویژگی های موجود در داده های جدید استخراج می شوند. این عمل می تواند به صورت جداگانه برای هر یک از بخش های مورد نظر در سازه انجام شود. با استفاده از ویژگی های استخراج شده از سازه ی سالم و سازه در وضعیت مجهول از نظر سلامت سازه، شاخص سلامت برای هر یک از بخش های مورد بررسی سازه محاسبه می شود. با توجه به ویژگی های استخراج شده در حالت سالم و مجهول سازه، وجود و شدت آسیب های احتمالی شناسایی می شوند. یکی از مزیت های روش ارائه شده عدم نیاز به مدلسازی آسیب ها برای آموزش شبکه عصبی است و فقط پاسخ های سازه سالم برای آموزش شبکه عصبی استفاده می شود. جهت بررسی روش پیشنهادی یک ساختمان بلند مرتبه مدلسازی شده و شاخص های سلامت برای هر یک از قسمت های سازه محاسبه شده است. شاخص های سلامت محاسبه شده برای ساختمان مورد بررسی دارای دقت قابل قبولی هستند و دقت روش پیشنهادی تقریبا ۹۵ درصد می باشد همچنین آسیب های موجود و شدت آنها با دقت مناسبی شناسایی شده اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

A novel unsupervised deep neural network based method for damage detection in civil structures

نویسندگان English

Pedram Ghaderi
amin abdolmaleki
Iran University of Science and Technology
چکیده English

Civil structures may experience unexpected loads and consequently damages during their life cycle. Damage identification has been a challenging inverse problem in structural health monitoring. The main difficulty is characterizing the unknown relation between the measurements and damage patterns. Such damage indicators would ideally be able to identify the existence, location, and severity of damages. In order to solve such problems, biologically inspired soft-computing techniques have gained traction. The most widely used soft-computing method, called neural networks is designed such that it can learn from data without a need of feature design process. Damage pattern can be detected using neural network. A deep unsupervised neural network can recognize patterns and extract features from data. In this paper a methodology is described for global and local health condition assessment of structural systems using vibration response of the structure. The model incorporates Fast Fourier Transform and unsupervised deep Boltzmann machine to extract features from the frequency domain of the recorded signals. Restricted boltzmann machine is a shallow neural network with two layer. First layer of restricted boltzmann machine called input layer and second layer of restricted boltzmann machine called hidden layer.Deep Boltzmann machine created by setting some restricted Boltzmann machine sequentional. Hidden layer of each restricted boltzmann machine is input layer of next restricted boltzmann machine. Each layer of restricted Boltzmann machine extract features form input data Recorded data divided to smaller vectors. Fast fourier transformation used to transform divided vectors into frequency domain. A benefit of the proposed model is that it does not require costly experimental results to be obtained from a scaled version of the structure to simulate different damage states of the structure and only vibration response of the healthy structure is needed to training deep neural network. The input consists of a set of records obtained from the healthy state of the structure and another set of records with unknown health states. The model extracts information from both healthy and unknown sets to determine the health states of the unknown set. The healthy records are low intensity vibrations of the structure at least in one planar direction in the healthy state in the form of time series signals and The unknown records are low intensity vibrations of the structure on unknown state of health. Ambient vibrations can be due to wind, traffic, or human/pedestrian activities. An appropiate health index is defined and calculated for each part of the structure. The value of this index is between 0 and 1. The closer the value is to 1 the healthier the structure. To evaluate the efficiency of the proposed method a building structures with 35 story has been simulated in OPENSEES. Data collection should be selected appropriately to prevent errors. Obtained result demonstrate that proposed method has about 95 percent efficiency to predict damages and their severity. Different damage state put on due to three earthquakes with different severity. Structural health index calculated after each earthquake. Calculated structural health index demonstrate efficieency of proposed method for detecting damages and severity of damages.

کلیدواژه‌ها English

Structural health monitoring
Deep Unsupervised Neural Network
deep learning
Feature Extraction
[1] McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical Biophysics. 5 (4): 115–133.
[2] Morris RG. D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res Bull. 1999 Nov-Dec;50(5-6):437. doi: 10.1016/s0361-9230(99)00182-3. PMID: 10643472.
[3] Schmidhuber, J. (2015). "Deep Learning in Neural Networks: An Overview". Neural Networks. 61: 85 117. arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003. PMID 25462637. S2CID 11715509
[4] Ivakhnenko, A. G. (1973). Cybernetic Predicting Devices. CCM Information Corporation.
[5] Ivakhnenko, A. G.; Grigorʹevich Lapa, Valentin (1967). Cybernetics and forecasting techniques. American Elsevier Pub. Co.
[6] Smolensky, P. (1986). "Information processing in dynamical systems: Foundations of harmony theory.". In D. E. Rumelhart; J. L. McClelland; PDP Research Group (eds.). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. 1. pp. 194–281
[7] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks 28 JULY 2006 VOL 313
[8] Schmidhuber, Jürgen (2015). "Deep Learning". Scholarpedia. 10 (11):32832. Bibcode:2015SchpJ..1032832S. doi:10.4249/scholarpedia.32832.
[9] Hinton, G.E. (2009). "Deep belief networks". Scholarpedia. 4 (5): 5947. Bibcode:2009SchpJ...4.5947H
[10] Bengio, Y.; Courville, A.; Vincent, P. (2013). "Representation Learning: A Review and New Perspectives". IEEE Transactions on Pattern Analysis and Machine Intelligence. 35 (8): 1798 1828. arXiv:1206.5538. doi:10.1109/tpami.2013.50. PMID 23787338. S2CID 393948.
[11] Roohollah Hanteh, Mojtaba Hanteh, Ali Kheyroddin, Omid Rezaifar Determination of Strength Parameters in Roller Compacted Concrete (RCC) Dams using Laboratory Results and
Forecasting based on Artificial Neural Networks- Modares Civil Engineering journal. IQBQ. 2020; 20 (2) :55-70
URL: http://mcej.modares.ac.ir/article-16-46458-fa.html
[12] Panagiotis Sevente,kidis Dimitrios, Giagopoulos Alexandros, Arail opoulos, Olga Markogiannaki- Structural Health Monitoring using deep learning with optimal finite element model generated data- Mechanical Systems and Signal Processing-Volume 145, November–December 2020, 106972
[13] Mengying Li, Ziyan Wu, Dawei Jia, Shumao Qiu, Wei He, Structural damage identification using strain mode differences by the iFEM based on the convolutional neural network (CNN), Mechanical Systems and Signal Processing, 10.1016/j.ymssp.2021.108289, 165, (108289)
[14] Yeum CM, Dyke SJ. Vision based automated crack detection for bridge inspection. Comput-Aided Civil Infrastruct Eng 2015;30(10):759–70.
[15] Young-Jin Cha*, Wooram Choi, Gahyun Suh & Sadegh Mahmoudkhani . Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Computer-Aided Civil and Infrastructure Engineering 00 (2017) 1–17
[16] S. Yin, X. Li, H. Gao, O. Kaynak, Data-based techniques focused on modern industry: an overview, IEEE Trans. Industr. Electron. 62 (1) (2015) 657–667, ISSN 0278-0046
[17] S. Jeschke, C. Brecher, H. Song, D.B. Rawat, Industrial Internet of Things, Springer, 2017.
[18] D. Lund, C. MacGillivray, V. Turner, M. Morales, Worldwide and regional internet of things (iot) 2014–2020 forecast: A virtuous circle of proven value and demand, International Data Corporation (IDC), Tech. Rep
[19] Zhong Y, Xiang J. A two-dimensional plum-blossom sensor array-based multiple signal classification method for impact localization in composite structures. Comput-Aided Civil Infrastruct Eng 2016;31(8):633–43
[20] Shan J, Ouyang Y, Yuan HW, Shi W. Seismic data driven identification of linear physical models for building structures using performance and stabilizing objectives. Comput- Aided Civil Infrastruct Eng 2016;31(11):846–70.
[21] Shan J, Shi W, Lu X. Model reference health monitoring of hysteretic building structure using acceleration measurement with test validation. Comput-Aided Civil Infrastruct Eng
2016;31(6):449–64.
[22] Lei Y, Zhou H, Lai ZL. A computationally compact algorithm for real-time detection of abrupt structural stiffness degradations. Comput-Aided Civil Infrastruct Eng
2016;31(6):465–80
[23] Sarkar, S., Reddy, K. K., Giering, M., & Giering, M. (2016). Deep Learning for Structural Health Monitoring: A Damage Characterization Application. Annual Conference of the PHM Society, 8(1). https://doi.org/10.36001/phmconf.2016.v8i1.2544
[24] Y. Li, T. Kurfess, S. Liang, Stochastic prognostics for rolling element bearings, Mech. Syst. Signal Process. 14 (5) (2000) 747–762.
[25] Nur Sila Gulgec, S.M.ASCE; Martin Taká; and Shamim N. Pakzad, A.M.ASCE. Convolutional Neural
Network Approach for Robust Structural Damage Detection and Localization . J. Comput. Civ. Eng., 2019, 33
[26] Entezami, A.; Sarmadi, H.; Mariani, S. An Unsupervised Learning Approach for Early Damage Detection by Time Series Analysis and Deep Neural Network to Deal with Output-Only (Big) Data. Eng. Proc. 2020, 2, 17. https://doi.org/10.3390/ecsa-7-08281
[27] Amir Zayeri baghlani nejad, Mussa Mahmoudi Sahebi- A new method for determining the natural frequencies of structures from their ambient vibration-
Modares Civil Engineering journal. 2020; 20 (5) :89-102
URL: http://mcej.modares.ac.ir/article-16-38767-en.html
[28] Mohammad Hossein Rafiei1 | Hojjat Adeli. A novel machine learning‐based algorithm to detect damage in high‐rise building structures . Struct Design Tall Spec Build. 2017;e1400.
[29] Mohammad Hossein Rafiei, Hojjat Adeli A Novel Machine Learning Model for Estimation of Sale Prices of Real Estate Units. Journal of Construction Engineering and Management. Volume 142 Issue 2 - February 2016
[30] Mohammad Hossein Rafiei, Hojjat Adeli . A novel unsupervised deep learning model for global and local health condition assessment of structures. Engineering Structures 156 (2018) 598–607
[31] Chathurdara Sri NadithPathirage,JunLibStructural damage identification based on autoencoder neural networks and deep learning-Engineering Structures
Volume 172, 1 October 2018, Pages 13-28
[32] Chathurdara Sri Nadith Pathirage, Jun Li, Ling Li, Hong Hao, Wanquan Liu, Pinghe Ni. Structural damage identification based on autoencoder neural networks and deep learning. Engineering Structures 172 (2018) 13–28
[33] ZohrehMousavi,Mir MohammadEttefagh et all-
Developing deep neural network for damage detection of beam-like structures using dynamic response based on FE model and real healthy state-Applied Acoustics
Volume 168, November 2020, 107402
[34] Oh BK, Glisic B, Kim Y, Park HS. Convolutional neural network–based data recovery method for structural health monitoring. Structural Health Monitoring. 2020;19(6):1821-1838. doi:10.1177/1475921719897571
[35] Qarib H, Adeli H. A new adaptive algorithm for automated feature extraction in exponentially
damped signals for health monitoring of smart structures. Smart Mater Struct
2015;24(12):125040
[36] Menegotto M, Pinto PE. Method of analysis for cyclically loaded R.C. frames
including changes in geometry and non-elastic behavior of elements under combined normal force and bending. Istituto di Scienza e Tecnica delle Costruzioni, University of Rome; 1972.