ارزیابی مشخصات مکانیکی ملات های اصلاح شده با پلیمر و چسبندگی آن ها با فولاد

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران
2 استاد، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران
چکیده
با توجه به آسیب­های وارده به سازه­های بتنی، لزوم استفاده از لایه­های تعمیری مناسب امری ضروری می­باشد. در ساختمان­های بتن آرمه، بتن و فولاد در ارتباط با یکدیگر بوده و در اکثر موارد نیز لایه­های تعمیری در ارتباط مستقیم با فولاد اعمال می­گردد. لذا در این تحقیق با بکارگیری آزمون­های "انتقال اصطکاک" و "کشیدن از سطح" اقدام به اندازه گیری مقاومت چسبندگی برشی و کششی بین ملات­های اصلاح شده با پلیمر و فولاد شده است. همچنین تاثیر پلیمر بر جمع شدگی ملات­ها و تاثیر آن بر مقاومت چسبندگی مورد بررسی قرار گرفته است. تاثیر پلیمر بر ملات­ها با استفاده از عکسبرداری با میکروسکوپ الکترونی روبشی و نرم افزارهای Image J و Origin مورد مطالعه قرار گرفت. در ادامه نیز برای ارزیابی مشخصات مکانیکی ملات­ها، با استفاده از آزمون های فوق، مقاومت فشاری و خمشی درجای ملات­ها تعیین و ضمن مقایسه با آزمون­های استاندارد آزمایشگاهی، نمودارهای کالیبراسیون رسم گردیدند. سپس معادلات تبدیل نتایج آزمون­های درجا به مقاومت فشاری و خمشی ملات­های اصلاح شده با پلیمر ارائه گردیدند. در انتها نیز با استفاده از نرم افزار ABAQUS ترک­ها و تنش­های بوجود آمده در ملات­ها ارائه شدند. لایه تعمیری اعمال شده روی بستر فولادی حاوی نسبت ماسه به سیمان برابر 3 و نسبت آب به سیمان برابر 5/0 می باشد. برای ارزیابی مشخصات مکانیکی ملات های تعمیری، پلیمر استایرن بوتادین رابر با نسبت های 10، 15 و 20 درصد وزن سیمان به ملات اضافه گردید. نتایج حاصله بیانگر تاثیر پلیمر بر کاهش جمع شدگی ملات­ها و افزایش مقاومت چسبندگی برشی و کششی بین فولاد و ملات می باشد بگونه ای که افزودن پلیمر به میزان 10، 15 و 20 درصد باعث کاهش جمع شدگی ملات ها به ترتیب به مقدار 3/35، 2/41 و 4/45 درصد در سن 90 روز شده است. مقاومت چسبندگی برشی و کششی 90 روزه بین ملات و فولاد نیز با افزودن پلیمر، به ترتیب به مقدار 1/303 و 2/291 درصد افزایش داشته است. همچنین ضریب همبستگی بالایی بین قرائت­های بدست آمده از آزمون­های درجا با آزمون های آزمایشگاهی مشاهده شد به گونه ای که می توان با بکارگیری آزمون های "انتقال اصطکاک" و "کشیدن از سطح" به ترتیب با استفاده ازمعادلات y=0.113x و y=0.063x مقاومت فشاری ملات های اصلاح شده با پلیمر را تعیین نمود. در ضمن همخوانی بالایی بین نتایج عددی و نتایج آزمایشگاهی بدست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of mechanical properties of polymer modified mortars and their bond strength to steel

نویسندگان English

Ali Saberi Varzaneh 1
Mahmood Naderi 2
1 Imam Khomeini International University, Qazvin, Iran
2 Professor, Imam Khomeini International University, Qazvin, Iran
چکیده English

Today, the use of different kinds of polymer, as the modifier of some repair mortars properties, is growing. Given the damages to concrete structures, it is necessary to use appropriate repair layers. In concrete structures, concrete and steel are connected, and in most cases, repair layers are applied in direct connections with steel. Therefore, in this research, the shear and tensile bond strength between steel and styrene-butadiene rubber polymer modified mortars was measured using semi-destructive friction-transfer and pull-off tests. In the "pull-off" test, to determine the bond between the mortar and the steel, a core with a 50mm diameter and is first mounted on the test surface using a diamond drill bit and a metal cylinder with a diameter of 50 mm and a thickness of 20 mm is attached to the partial core. Then, the tensile force is applied to the cylinder by means of a "pull-off" device to make the partial core fail. To measure adhesion with friction transfer method, first a small core was created from the mortar surface to the steel substrate surface using the coring machine. Thereafter, the friction transfer metal device was fixed onto the core and the torsional moment was applied using a typical torque wrench in order to cause failure in the core. Moreover, the effect of polymer on the shrinkage of mortar was evaluated. Shrinkage is one of the important problems that negatively affects the adhesion of repair mortar and steel. Due to the fact that hydrated cement paste has capillary pores that contain some water, shrinkage occurs after this moisture leaves the pores. The effect of polymer on mortars was investigated by taking images with a scanning electron microscope and using the “Image-J” and “Origin” software programs. Afterward, in order to evaluate the mechanical properties of mortars, the in-situ compressive and flexural strengths of the mortars were determined, and the calibration curves were plotted by comparing them with standard laboratory tests. Then, relationships were proposed to convert the results of in-situ tests to the compressive and flexural strength of the polymer modified mortars. Eventually, the cracks and stresses that appeared in the mortars were provided using ABAQUS software. The obtained results indicated the effect of polymer in reducing the shrinkage of mortars and increasing the shear and tensile bond strength between steel and mortar, along with a high correlation coefficient between the measurements in the in-situ and laboratory tests. Comparing the modified mortars with polymer and ordinary mortar, it is observed that at the age of 90 days, adding 10, 15 and 20% of SBR reduced the amount of shrinkage to 35.3%, 4.2% and 45.4%, respectively. Addition of styrene butadiene rubber to the repair mortar increased the shear bond strength obtained from the "friction transfer" test between the mortar and steel at the ages of 7, 42 and 90 days by 44.4, 178.2 and 303.1%, respectively. Adding SBR to the repair mortar increased the tensile strength of the "pull-off" test between the mortar and the steel at the ages of 7, 42 and 90 days by 58.7, 183.4 and 291.2%, respectively. A good agreement was also observed between the numerical and experimental results.

کلیدواژه‌ها English

SBR
Mortar
Steel
ABAQUS
Friction transfer
Pull-off
[1] Doğan, M., &Bideci, A. (2016). “Effect of Styrene Butadiene Copolymer (SBR) admixture on high strength concrete”. Construction and Building Materials, Vol.112.pp 378-385.
[2] Ahmed, S.A., Hawraa, S.J., Inas, S.M. (2012). “Improvement the Properties of Cement Mortar by Using Styrene Butadiene Rubber Polymer”. Engineering and Development, Vol. 16(3), pp. 61-72.
[3] Shuyi, Y., Yong, G. (2012). “Effect of Styrene Butadiene Rubber Latex on Mortar and Concrete Properties”. Advanced Engineering Forum, Vol. 5, pp. 283-288.
[4] Knapen, E., & Van Gemert, D. (2015). “ Polymer film formation in cement mortars modified with water-soluble polymers”. Cement and Concrete Composites, 58, 23-28.
[5] Çavdar, A., Sevin, S. , Kaya, Y. , Bingöl, Ş. (2014). “The Effects of Cure Conditions on Mechanical Properties of Polymer Modified Cement Mortars”. Balkan Journal of Electrical & Computer Engineering, Vol. 2(2), pp. 79-85.
[6] Afridi, M.U.K., Ohama, Y., Zafar Iqbal, M., Demura, K. (1995). “Water Retention and Adhesion of Powdered and Aqueous Polymer-Modified Mortars”. Cement And Concrete Composites, Vol. 17, pp. 113-118.
[7] ASTM C808/C805M-18. (2018) Standard Test Method for Rebound Number of Hardened Concrete, ASTM International, West Conshohocken, PA.
[8] ASTM C597-16. (2016) Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA.
[9] ACI Committee 214, Report 214.4R-03. (2003) Guide for Obtaining Cores and Interpreting Compressive Strength Results, American Concrete Institute.
[10] ASTM C900-15. (2015) Standard Test Method for Pullout Strength of Hardened Concrete, ASTM International, West Conshohocken, PA.
[11] Masi. A., Digrisolo. A., Santarsieo. G. (2013). arsiero, “Experimental evaluation of drilling damage on the strength of cores extracted from RC buildings. in Proceedings of World Academy of Science, Engineering and Technology, 7(7). p. 749.
[12] Naderi, M. (2005). “Friction-Transfer Test for the Assessment of in-situ Strength & Adhesion of Cementitious Materials”, Construction & Building Materials, 19 (6) 454-459.
[13] Naderi M. (2007) New Twist-Off Method for the Evaluation of In-Situ Strength of Concrete, Journal of Testing and Evaluation. 35(6). ISSN: 0090-3973.
[14] ASTM C1583, (2004). Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull-off method), West Conshohocken PA, American Society for Testing and Materials.
[15] Saberi Varzaneh. A., and Naderi. M. (2021) The Effect of Precompression on Adhesion between Concrete and Fiber-Reinforced Mortars and Assessment of Compressive Strength of Mortars Using In-Situ Tests. Sharif Journal of Civil Engineering. Article in press.
[16] Saberi Varzaneh. A., and Naderi. M. (2021) Numerical and experimental study of in-situ methods to evaluate the mechanical properties of fiber-reinforced mortars. Amir Kabir Journal of Civil Engineering. 10.22060/ajce.2020.18319.5672.
[17] Saberi Varzaneh. A., and Naderi. M. (2020) DETERMINATION OF MECHANICAL PROPERTIES OF REPAIR MORTARS USING IN SITU METHODS UNDER DIFFERENT CURINGS. EUREKA: Physics and Engineering. Number 2. 10.21303/2461-4262.2020.001190.
[18] Saberi Varzaneh. A., and Naderi. M. (2021) Experimental and Finite Element Study to Determine the Mechanical Properties and Bond Between Repair Mortars and
Concrete Substrates. J. Appl. Comput. Mech., 7(1). 10.22055/JACM.2020.32921.2101.
[19] Naderi, M. (2006) “Assessing the Insitu Strength of Concrete, Using new Twist-off Method”, Interntional Journal of Civil Engineering, Vol.4, No. 2, 146-155.
[20] Naderi, M. (2013) “New Method for Nondestructive Evaluation of Concrete Strength”, Australian Journal of Basic and Applied Sciences, 7(2): 438-447.
[21] Naderi, M. (2011) “Using Twist-Off Method for Measuring Surface Strength of Concretes Cured under Different Environments”, Journal of Materials in Civil Engineering, 23: 385-392.
[22] Araujo, D.L. Danin, A.R. Melo, M.B. and Rodrigues, P.F. (2013) Influence of steel fibers on the reinforcement bond of straight steel. Revista IBRACON de Estruturas e Materriais - RIEM, v.6, n.2.
[23] Neville, A.M., and J. J. Brooks. (2013) Tecnologia do concreto. Porto Alegre: Bookman.
[24] Neville, A.M. (2012) Properties of concrete, fifth ed., Harlow, United Kingdom.
[25] Naderi, M. (2008) Adhesion of Different Concrete Repair Systems Exposed to Different Environments, J. Adhesion. 84 78-104. https://doi.org/10.1080/00218460801888433.
[26] Koulouris, K., and Apostolopoulos, Ch. (2020) An Experimental Study on Effects of Corrosion and Stirrups Spacing on Bond Behavior of Reinforced Concrete. Metals 2020, 10, 1327; doi: 10.3390/met10101327.
[27] Lin, H.; Zhao, Y.; Yang, J.-Q.; Feng, P.; Ozbolt, J.; Ye, H. (2019) Effects of the corrosion of main bar and stirrups on the bond behavior of reinforcing steel bar. Constr. Build. Mater. 225, 13–28.
[28] Yousef, R.A., Mahmoud. G., Aref. A.A., and Mohamed. K. (2020) Bond behavior between concrete and steel rebars for stressed elements. Ain Shams Engineering Journal. Article in press. https://doi.org/10.1016/j.asej.2020.10.001.
[29] Chu. S.H., and Kwan, A.K.H. (2019) A new bond model for reinforcing bars in steel fibre reinforced concrete. Cement and Concrete Composites. Volume 104, 103405. https://doi.org/10.1016/j.cemconcomp.2019.103405.
[30] Huang. L., Lihua. X., Chi. Y., Deng. F., Zhang. A. (2019) Bond strength of deformed bar embedded in steel-polypropylene hybrid fiber reinforced concrete. Construction and Building Materials. Volume 218, Pages 176-192. https://doi.org/10.1016/j.conbuildmat.2019.05.096.
[31] Alok. A.D., Dhpande. D., and Kumar. R. (2020) Temperature effects on the bond behavior between deformed steel reinforcing bars and hybrid fiber-reinforced strain-hardening cementitious composite. Cement and Concrete Composites. Volume 233, 117337. https://doi.org/10.1016/j.conbuildmat.2019.117337.
[32] Wanjie. Z., Jiongfeng. L., Dawei. L., and Guangwu. Zh. (2020) Bond Behavior between Steel Rebar and RCA Concrete after Exposure to Elevated Temperatures. Advances in Materials Science and Engineering. Volume 2020, Article ID 5230295, 10 pages. https://doi.org/10.1155/2020/5230295.
[33] Berthet, J.F. Yurtdas, I. Delmas, Y. Li n, A. (2011) Evaluation of the adhesion resistance between steel and concrete by push out test International Journal of Adhesion & Adhesives 31 75–83
[34] ASTM 127-15. (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA.
[35] ASTM C136-01. (2001). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA.
[36] C. ASTM C157. (2008). Test method for length change of hardened hydraulic cement mortar and concrete, West Conshohocken PA, American Society for Testing and Materials.
[37] ASTM C490. (2011). Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete, West Conshohocken PA, American Society for Testing and Materials.
[38] ASTM C109, (2013). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens), American Society for Testing and Materials.
[39] ASTM C348-19. (2012). Standard test method for Flexural Strength of Hydraulic-Cement Mortars. West Conshohocken PA, American Society for Testing and Materials.
[40] A. M. Diab., H. E. Elyamany., A. H. Ali. Experimental investigation of the effect of latex solid/water ratio on latex modified co-matrix mechanical properties. Alexandria Engineering Journal. (2013) 52, 83-98.
[41] Baoshan Huang, Hao Wu, Xiang Shu, E.G. Burdette, Laboratory evaluation of permeability and strength of polymer-modified pervious concrete, Construction and Building Materials 24 (5) (2010) 818–823.
[42] H. Y. Jiang, Z. X. Liu, Research of Polymer Cement Concrete, J.Journal of Wu Han University of Technology, 18 (1996): 37-38.