ارزیابی کارایی روش سیمانی سازی زیستی در مقاوم سازی ماسه های روان به منظور مقابله با فرسایش بادی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه شیراز
چکیده
فرسایش بادی و به­تبع آن پدیده ریزگرد با وجود همه راهکارهای مقابله با آن، امری اجتناب‌ناپذیر است. بنابراین بررسی و بکارگیری روش‌های نوین جهت مقابله با این پدیده طبیعی که بیشتر منشأ فرامنطقه­ای دارد بایستی بیشتر موردتوجه واقع گیرد. در همین ارتباط در این پژوهش از یک روش نوین و سازگار با محیط زیست که از باکتری­های موجود در خاک به منظور بهبود خواص فیزیکی خاک استفاده می­کند بهره­گرفته شده است. بنابراین از گونه­ای خاص باکتری با نام علمی Sporosarcina Pasteurii، با قابلیت تولید آنزیم اوره­آز که موثر در فرآیند رسوب میکروبی کربنات کلسیم می­باشد، به بررسی میزان مقاومت فشاری خاک در برابر فرسایش بادی پرداخته ­شد. در همین راستا، از یک دستگاه نفوذسنج جیبی به منظور کمی­سازی میزان مقاومت فشاری خاک، و همچنین یک دستگاه تونل باد، به منظور شبیه سازی میزان فرسایش پذیری گونه­های خاک­ در طیف وسیعی از سرعت باد (با دامنه 1-20m/s)استفاده گردید. به منظور در نظر گرفتن شرایط فیزیکی و شیمیایی خاک بر میزان بازدهی این روش، از دو گونه خاک ماسه سیلیسی با دانه­بندی متفاوت و همچنین یک گونه خاک ماسه­ای با منشا کربناته استفاده شده است. پارامترهای مورد بررسی شامل زمان­های نگهداشت 3، 7، 14، 20 و 28 روز، تزریق مجدد محلول باکتری و سمنتاسیون با فاصله زمانی 6 روز و همچنین تأثیر شرایط محیطی بر میزان اثرگذاری باکتری در خاک می­باشد. همچنین از تست SEM برای بررسی ریزساختاری خاک­ها قبل و بعد از بهسازی استفاده شد. نتایج حاصل از بکارگیری دستگاه نفوذسنج نشان داد که مقاومت فشاری خاک به صورت معنادار با زمان افزایش می­یابد که بیشترین مقاومت در ماسه کربناته به میزان 84 kPa حاصل شد. ماسه سیلیسی با توزیع دانه‌بندی ریزتر مقاومت فشاری بیشتری نسبت به گونه دیگر آن نشان داد. همچنین این نتایج نشان داد که تزریق مجدد، تأثیر افزاینده‌ای به صورت معنادار در مقاومت فشاری خاک به ‌خصوص در ماسه سیلیسی به اندازه 190% در دوره 28 روزه دارد. نتایج حاصل از شبیه­سازی میزان فرسایش در دستگاه تونل باد نشانگر عملکرد بسیار مناسب این روش در بهسازی خاک و ایجاد لایه مقاوم سطحی نسبت به فرسایش می­باشد به گونه­ای که هیچ گونه فرسایشی در دامنه سرعت­های موجود مشاهده نگردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating Performance of Biocementation Method in Stabilization Sand Dunes for Dealing with Wind Erosion

نویسندگان English

hamideh ghaffari
Seyed Mohammad Ali Zomorodian
Shiraz University
چکیده English

Wind erosion and the phenomenon of Dust with all of its controlling methods is serious problem. This phenomenon lead environment degradation and fugitive dust storms. So, Study and use of the new methods to control this natural phenomenon is essential. In this study, the novel and environmental friendly method of soil biological stabilization was investigated with using an abundant bacterial species founding in nature and soil deposits. The scientific name of this bacterium is Sporosarcina Pasturii (PTCC 1645) and uses as the urease-positive bacterium. This bacterium produce urease enzyme which converts urea to ammonium and carbonate, resulting in the precipitation of calcite crystals that bridge the soil particles. In this study a mixture of cementation and bacterial-cell solutions uniformly sprayed onto the exposed top surfaces of the soils. The concentration of bacterial-cell solution was quantified in terms of its optical density at 600nm wavelength (OD600) which equal 1.5 (that is, approximately 1.5×108 bacterial cells·ml−1). The prepared equimolar urea–calcium chloride cementation solution included nutrient broth (3g.l-1), ammonium chloride (10g.l-1) and sodium bicarbonate (2.12g·l-1) prepared at 0.5M concentration. The mixture volume sprayed onto each specimen was equal to 1.5Vv (where Vv is the pore voids volume of the topmost 3-mm thick layer of the 20–mm deep loose sand tray-specimens). The bench scale experimental programme presented investigates the proposed technique’s effectiveness for stabilisation of two clean, angular to sub-angular medium silica sands and carbonate silty sands with different gradations (sand t60 and sand t90 with size ranges of 0.125–0·50 and 0.075–0.85mm, respectively and carbonate sand with size ranges of 0·001–0·85mm, and mean particle size (D50) values of 0.28, 0.24 and 0.20 mm, respectively), the time-dependent (retention time 3, 7, 14, 20 and 28 days) compressive strength development for the crustal sand layer following single- and double-MICP (with interval of 6 days) spray treatments, as well as wind tunnel experiments under the condition of wind velocity of 20 ms-1. The effect of dew formation on crustal compressive strength development with curing period and the efficiency of the MICP treatment for the outdoor environment compared to laboratory-controlled test conditions. A pocket penetrometer was used to determine the compressive strength of soils. Significant improvements in the Compressive strength of the treated soil samples were observed. The results show improving compressive strength with time. The highest compressive strength in the carbonate sand was obtained equals to 84 kPa. Silica sand with finer size distribution has shown more compressive strength than two other soils. Also the results showed that double-MICP spray treatments of the bacteria solution and cementation was more effective than single- MICP spray treatments in the compressive strength of soils, especially in the silica sand equals to 190% in a curing period of 28 days. Also, the cured MICP-treated crustal sand layer was stable to 20 m·s−1 winds that demonstrating the potential of biological stabilisation via the MICP process as an appropriate option for dealing with desertification and motion of sandy soil deposits.

کلیدواژه‌ها English

Wind Erosion
Sporosarcina Pasteurii
compressive strength
Pocket Penetrometer
1. Zhang, C., Wang, X., Zou, X., Tian, J., Liu, B., Li, J., Kang, L., Chen, H. & Wu, Y. 2018. Estimation of surface shear strength of undisturbed soils in the eastern part of northern China’s wind erosion area. journal of Soil and Tillage Research, 178, 1–10.
2. Saadoud, D., Hassani, M., Martin Peinado, F. J. & Guettouche, M. S. 2018. Application of fuzzy logic approach for wind erosion hazard mapping in Laghouat region (Algeria) using remote sensing and GIS. journal of Aeolian Research, 32, 24–34.
3. Ghaffari, H. & Zomorrodian, M. 2017. Evaluation of shear strength of soil stabilized by microbiology. Iranian Journal of Soil and Water Research, 48(4), 737-748, (In Persian).
4. Chen, L. Z., Xie, Z. M., Hu, C. X., Li, D. H., Wang, G. H. & Liu, Y. D. 2006. Man-made desert algal crusts as affected by environmental factors in Inner Mongolia, China. Journal of Arid Environments, 67, 521-527.
5. Okyay T. O. & Rodrigues D.F. 2014 Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology. Ecological Engineering, 62, 168-174.
6. DeJong, J.T. 2010. Bio-mediate soil improvement. Ecological Engineering, (36), 197-210.
7. Tobler, DJ., Maclachlan, E. & Phoenix, VR. 2012. Microbially mediated plugging of porous media and the impact of differing injection strategies. Ecological Engineering 42, 270–278.
8. Ivanov, V. 2015. Environmental microbiology for engineers. CRC Press.
9. Zomorodian, S.M.A., Ghaffari, H. & O'Kelly, B.C. 2019. Stabilisation of crustal sand layer using biocementation technique for wind erosion control, Aeolian Research, 40 (2019), 34-41.
10. Chou, C.W. Seagren, E.A. Aydilek, A.H. & Lai, M. 2011. Biocalcification of Sand through Urelysis. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 127(12), 1179-1189.
11. Al Qabany, A. 2011. Microbial Carbonate Precipitation in Soils. Doctoral Dissertation. University of Cambridge. UK.
12. Martinez, B.C., Barkouki, T.H., DeJung, J.T. & Ginn, T.R. 2011. Upscaling of Microbial Induced Calcite Precipitation in 0.5m Columns: Experimental and Modeling Results. ASCE Geofrontiers 2011: Advances in Geotechnical Engineering, Geotechnical Special Publication, 4049-4059.
13. Montoya, B. M., DeJong, J. T. & Boulanger, R. W. 2013. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 63(4), 302-312.
14. Achal, V. and Mukherjee, A. & Reddy, M. S. 2010. Microbial concrete: A way to enhance the durability of building structures. J. Mater. Civil Eng. 1943-5533.
15. Bang, S. and Min, S.H. & Bang, S.S. 2011. Application of Microbiologically Induced Soil Stabilization Technique for Dust Suppression. International Journal of Geo-Engineering, 3(2), 27-37.
16. Maleki, M., Ebrahimi, S., Asadzadeh, F. & Emami Tabrizi, M. 2015. Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil, Int. J. Environ. Sci. Technol, (In Persian).
17. Liu, J., Shi, B., Lu,Y., Jiang, H., Huang, H., Wang, G. & Kamai, T. 2012. Effectiveness of a new organic polymer sand-fixing agent on sand fixation. Journal of Environmental Earth Sciences, 65, 589-595.
18. Genis, A., Vulfson, L. & Ben-Asher, J. 2012. Combating wind erosion of sandy soils and crop damage in the coastal deserts: Wind tunnel experiments. Journal of Aeolian Research, 9, 69‐73.
19. Yasun, A.S. 2018. Capability of Pocket Penetrometer to Evaluate Unconfined Compressive Strength of Baghdad Clayey Soil. Al-Nahrain Journal for Engineering Sciences (NJES), 21(1), 66-73.
20. Graesch, A.P., Shankel, S.E. & Schaepe, D.M. 2015. The Pocket Penetrometer an Onsite Method for Discerning the Presence of Earthen House Floors and Other Trampled Surfaces, Advances in Archaeological Practice, 3(2), 93–106.
21. Sharifi Asadi, D., Ardakani, A. & Garoosi, G. 2018. Investigating effective factors of biocementation soil improvement on sandy soil with different Fine-content, Modares Civil Engineering Journal (M.C.E.J), 18 (2), 127-138, (In Persian).
22. Khaleghi, M. & Rowshanzamir, M. A. 2018. Improving strength and physical properties of sand by biological method. Modares Civil Engineering Journal (M.C.E.J), 18 (1), 101-111, (In Persian).
23. Rajabi Agereh, S., Kiani, F., Khavazi, K., Rouhipour, H. & Khormali,F. 2019. Evaluation of the efficiency of biological reformer in controlling wind erosion. Iranian Journal of Range and Desert Research, 26 (4), 824-837, (In Persian).
24. Amin, M., Zomorodian, S.M.A. & O’Kelly, B.C. 2017. Reducing the hydraulic erosion of sand using microbial induced carbonate precipitation, Ground Improvement, 170(Gl2), 112-122.
25. Stocks-Fischer, S., Galinat, J.K. & Bang, S.S. 1999. Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563-1571.
26. Whiffin, V.S., van Paassen, L.A. & Harkes, M.P. 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423.
27. Ramachandran, S.K., Ramakrishnan, V. & Bang, S.S. 2001. Remediation of concrete using micro-organisms. ACI Materials Journal, 98(1), 3-9.
28. BSI, 2015. BS5930: Code of Practice for Ground Investigations. BSI, London, United Kingdom.
29. Koopaeenia, M.A. & Afzali, S.F. 2015. Examining some desert conditions on some non-alive waste industrial mulches for controlling wind erosion. Ecol. Environ. Conserv, 21 (1), 15–23.
30. Shahrokhi-Shahraki, R., Zomorodian, S.M.A., Niazi, A. & O'Kelly, B.C. 2014. Improving sand with microbial-induced carbonate precipitation. Journal of Proceedings of the Institution of Civil Engineers, Ground Improvement, 168(3), 217- 230.
31. DeJong, J.T., Mortensen, B.M., Martinez, B.C. & Nelson, D.C. 2010. Bio-mediated soil improvement. Journal of Ecological Engineering, 197-210.
32. Maleki Kakelar, M., Ebrahimi, S., Asadzadeh, F. & Emami Tabrizi, M. 2016. Evaluation of the Efficiency of Microbial Induced Carbonate Precipitation for Loose Sand Dunes Fixation. Iranian Journal of Soil and Water Research, 47(2), 407-415, (In Persian).
33. Van Paassen, LA., Harkes, MP., Van Zwieten, GA. et al. 2009. Scale up of BioGrout: a biological ground reinforcement method. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt (Hamza M, Shahien M and El-Mossallamy Y (eds)). IOS Press, Amsterdam, The Netherlands, 3, 2328–2333.
34. Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H. & Nikudel, M. R. 2016. Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecol. Eng, 89, 49–55.
35. Rebata-Landa, V. 2007. Microbial Activity in Sediments: Effects on Soil Behaviour, Doctoral dissertation, Georgia Institute of Technology.
36. Todar, K. 2007. The Genus Bacillus. www.textbook of bacteriology.net/Bacillus.html.
37. Stabnikov, V., Chu, J., Naing Myo, A. & Ivanov, V. 2013. Immobilization of sand dust and associated pollutants using bio aggregation. Journal of Water Air Soil Pollutant, 224, 1631-1639.
38. Sahrawat, K. 1984. Efects of temperature and moisture on urease activity in semi-arid tropical soils". Plant and Soil, 78(3), 401-408.
39. Laity, J. 2008. Deserts and desert environments. (1th ed). Willey-Blackwell.
40. Xuan, J., Sokolik, I., Hao, J. & Guo, F. 2004. Identification and characterization of source of atmospheric mineral dust in East Asia. Journal of Atmospheric Enviromental, 38(36), 6239-6252.
41. Bang, S.S., Leibrock, C., Smith, B., Pinkelman, R.J., Frutiger, S., Nehl, L.M., Comes, B.L., Coleman, D. & Bang, S. 2009. Geotechnical values of microbial calcite in dust suppression. Proc. of NSF Engineering Research and Innovation Conference (CD-ROM), Honolulu, HI.