1. Zhang, C., Wang, X., Zou, X., Tian, J., Liu, B., Li, J., Kang, L., Chen, H. & Wu, Y. 2018. Estimation of surface shear strength of undisturbed soils in the eastern part of northern China’s wind erosion area. journal of Soil and Tillage Research, 178, 1–10.
2. Saadoud, D., Hassani, M., Martin Peinado, F. J. & Guettouche, M. S. 2018. Application of fuzzy logic approach for wind erosion hazard mapping in Laghouat region (Algeria) using remote sensing and GIS. journal of Aeolian Research, 32, 24–34.
3. Ghaffari, H. & Zomorrodian, M. 2017. Evaluation of shear strength of soil stabilized by microbiology. Iranian Journal of Soil and Water Research, 48(4), 737-748, (In Persian).
4. Chen, L. Z., Xie, Z. M., Hu, C. X., Li, D. H., Wang, G. H. & Liu, Y. D. 2006. Man-made desert algal crusts as affected by environmental factors in Inner Mongolia, China. Journal of Arid Environments, 67, 521-527.
5. Okyay T. O. & Rodrigues D.F. 2014 Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology. Ecological Engineering, 62, 168-174.
6. DeJong, J.T. 2010. Bio-mediate soil improvement. Ecological Engineering, (36), 197-210.
7. Tobler, DJ., Maclachlan, E. & Phoenix, VR. 2012. Microbially mediated plugging of porous media and the impact of differing injection strategies. Ecological Engineering 42, 270–278.
8. Ivanov, V. 2015. Environmental microbiology for engineers. CRC Press.
9. Zomorodian, S.M.A., Ghaffari, H. & O'Kelly, B.C. 2019. Stabilisation of crustal sand layer using biocementation technique for wind erosion control, Aeolian Research, 40 (2019), 34-41.
10. Chou, C.W. Seagren, E.A. Aydilek, A.H. & Lai, M. 2011. Biocalcification of Sand through Urelysis. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 127(12), 1179-1189.
11. Al Qabany, A. 2011. Microbial Carbonate Precipitation in Soils. Doctoral Dissertation. University of Cambridge. UK.
12. Martinez, B.C., Barkouki, T.H., DeJung, J.T. & Ginn, T.R. 2011. Upscaling of Microbial Induced Calcite Precipitation in 0.5m Columns: Experimental and Modeling Results. ASCE Geofrontiers 2011: Advances in Geotechnical Engineering, Geotechnical Special Publication, 4049-4059.
13. Montoya, B. M., DeJong, J. T. & Boulanger, R. W. 2013. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 63(4), 302-312.
14. Achal, V. and Mukherjee, A. & Reddy, M. S. 2010. Microbial concrete: A way to enhance the durability of building structures. J. Mater. Civil Eng. 1943-5533.
15. Bang, S. and Min, S.H. & Bang, S.S. 2011. Application of Microbiologically Induced Soil Stabilization Technique for Dust Suppression. International Journal of Geo-Engineering, 3(2), 27-37.
16. Maleki, M., Ebrahimi, S., Asadzadeh, F. & Emami Tabrizi, M. 2015. Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil, Int. J. Environ. Sci. Technol, (In Persian).
17. Liu, J., Shi, B., Lu,Y., Jiang, H., Huang, H., Wang, G. & Kamai, T. 2012. Effectiveness of a new organic polymer sand-fixing agent on sand fixation. Journal of Environmental Earth Sciences, 65, 589-595.
18. Genis, A., Vulfson, L. & Ben-Asher, J. 2012. Combating wind erosion of sandy soils and crop damage in the coastal deserts: Wind tunnel experiments. Journal of Aeolian Research, 9, 69‐73.
19. Yasun, A.S. 2018. Capability of Pocket Penetrometer to Evaluate Unconfined Compressive Strength of Baghdad Clayey Soil. Al-Nahrain Journal for Engineering Sciences (NJES), 21(1), 66-73.
20. Graesch, A.P., Shankel, S.E. & Schaepe, D.M. 2015. The Pocket Penetrometer an Onsite Method for Discerning the Presence of Earthen House Floors and Other Trampled Surfaces, Advances in Archaeological Practice, 3(2), 93–106.
21. Sharifi Asadi, D., Ardakani, A. & Garoosi, G. 2018. Investigating effective factors of biocementation soil improvement on sandy soil with different Fine-content, Modares Civil Engineering Journal (M.C.E.J), 18 (2), 127-138, (In Persian).
22. Khaleghi, M. & Rowshanzamir, M. A. 2018. Improving strength and physical properties of sand by biological method. Modares Civil Engineering Journal (M.C.E.J), 18 (1), 101-111, (In Persian).
23. Rajabi Agereh, S., Kiani, F., Khavazi, K., Rouhipour, H. & Khormali,F. 2019. Evaluation of the efficiency of biological reformer in controlling wind erosion. Iranian Journal of Range and Desert Research, 26 (4), 824-837, (In Persian).
24. Amin, M., Zomorodian, S.M.A. & O’Kelly, B.C. 2017. Reducing the hydraulic erosion of sand using microbial induced carbonate precipitation, Ground Improvement, 170(Gl2), 112-122.
25. Stocks-Fischer, S., Galinat, J.K. & Bang, S.S. 1999. Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563-1571.
26. Whiffin, V.S., van Paassen, L.A. & Harkes, M.P. 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423.
27. Ramachandran, S.K., Ramakrishnan, V. & Bang, S.S. 2001. Remediation of concrete using micro-organisms. ACI Materials Journal, 98(1), 3-9.
28. BSI, 2015. BS5930: Code of Practice for Ground Investigations. BSI, London, United Kingdom.
29. Koopaeenia, M.A. & Afzali, S.F. 2015. Examining some desert conditions on some non-alive waste industrial mulches for controlling wind erosion. Ecol. Environ. Conserv, 21 (1), 15–23.
30. Shahrokhi-Shahraki, R., Zomorodian, S.M.A., Niazi, A. & O'Kelly, B.C. 2014. Improving sand with microbial-induced carbonate precipitation. Journal of Proceedings of the Institution of Civil Engineers, Ground Improvement, 168(3), 217- 230.
31. DeJong, J.T., Mortensen, B.M., Martinez, B.C. & Nelson, D.C. 2010. Bio-mediated soil improvement. Journal of Ecological Engineering, 197-210.
32. Maleki Kakelar, M., Ebrahimi, S., Asadzadeh, F. & Emami Tabrizi, M. 2016. Evaluation of the Efficiency of Microbial Induced Carbonate Precipitation for Loose Sand Dunes Fixation. Iranian Journal of Soil and Water Research, 47(2), 407-415, (In Persian).
33. Van Paassen, LA., Harkes, MP., Van Zwieten, GA. et al. 2009. Scale up of BioGrout: a biological ground reinforcement method. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt (Hamza M, Shahien M and El-Mossallamy Y (eds)). IOS Press, Amsterdam, The Netherlands, 3, 2328–2333.
34. Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H. & Nikudel, M. R. 2016. Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecol. Eng, 89, 49–55.
35. Rebata-Landa, V. 2007. Microbial Activity in Sediments: Effects on Soil Behaviour, Doctoral dissertation, Georgia Institute of Technology.
36. Todar, K. 2007. The Genus Bacillus. www.textbook of bacteriology.net/Bacillus.html.
37. Stabnikov, V., Chu, J., Naing Myo, A. & Ivanov, V. 2013. Immobilization of sand dust and associated pollutants using bio aggregation. Journal of Water Air Soil Pollutant, 224, 1631-1639.
38. Sahrawat, K. 1984. Efects of temperature and moisture on urease activity in semi-arid tropical soils". Plant and Soil, 78(3), 401-408.
39. Laity, J. 2008. Deserts and desert environments. (1th ed). Willey-Blackwell.
40. Xuan, J., Sokolik, I., Hao, J. & Guo, F. 2004. Identification and characterization of source of atmospheric mineral dust in East Asia. Journal of Atmospheric Enviromental, 38(36), 6239-6252.
41. Bang, S.S., Leibrock, C., Smith, B., Pinkelman, R.J., Frutiger, S., Nehl, L.M., Comes, B.L., Coleman, D. & Bang, S. 2009. Geotechnical values of microbial calcite in dust suppression. Proc. of NSF Engineering Research and Innovation Conference (CD-ROM), Honolulu, HI.