ارزیابی آزمایشگاهی سلامت پل معلق براساس فتوگرامتری برد کوتاه هوشمند

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه خوارزمی
چکیده
در دهه‌های اخیر علم پایش‌سلامت‌سازه نقش اساسی در پیش­گیری از خرابی و افزایش طول ‌عمر سازه‌ها ایفا کرده است. استفاده ‌از ابزار‌هایی برای انجام رفتارسنجی مطلوبست که دقت کافی را همراه با هزینه‌ی کم تحقق بخشند. برای پردازش داده­های بدست آمده از رفتارسنجی به روش‌هایی نیاز است که قادر باشند سطوح مختلف آسیب را از اطلاعات موجود شناسایی و به‌درستی عیب‌یابی کنند.

رفتارسنجی اپتیکی و عملیات فتوگرامتری بردکوتاه بدلیل هزینه کم و دقت مناسب، اخیراً مورد توجه قرار گرفته اند در این مقاله تلاش شده است تا کاربرد روش مذکور در ترکیب با روش تحلیل استقرایی (با ابزارهای مقایسه و یادگیری ماشین) برای رفتارسنجی و عیب­یابی ماکت آزمایشگاهی سازه­ی یک پل معلق که دارای رفتار نسبتاً پیچیده­ای است مورد ارزیابی قرار گیرد. به این منظور، سازه­ی پل مورد نظر تحت سه تراز بارگذاری استاتیکی در سه حالت سالم و آسیب‌ دیده در عرشه و کابل­ها مورد رفتارسنجی قرار گرفت. آسیب­ها کاملاً آگاهانه در مدل آزمایشگاهی ایجاد شدند و از اطلاعات حاصل، پایگاه‌داده‌ای از رفتار پل در حالات گوناگون ایجاد شد. به‌منظور امکان سنجی استفاده از روش­های مختلف در پردازش داده­ها و عیب­یابی، ابتدا داده‌های موجود در پایگاه، در روش­ خطی ساده (مقایسه مستقیم) و آموزش در الگوریتم­های روش­های یادگیری‌ماشین، مورد استفاده قرار گرفتند. پس از آن، مجدداً آسیب­های آگاهانه­ای در سازه­ی آزمایشگاهی ایجاد شد تا امکان آزمون کارآیی و دقت روش­های مختلف فراهم شود. در انتها، دقت، صحت و پایداری روش­های پردازش داده ماشین ‌بردار‌پشتیبان و شبکه‌عصبی‌مصنوعی با یکدیگر مقایسه‌ شدند.

نتایج نشان داد که با توجیه به باندل اجسمنت رفتارسنجی دو بعدی اپتیکی فتوگرامتری بردکوتاه، می­توان به دقت تضمین ‌شده‌ی mm0021/0 ‌ دست یافت.‌‌‌‌‌‌‌‌‌ در سطح نخست پردازش داده­ها یعنی تشخیص وجود آسیب یا عدم‌ وجود آن موفقیت شبکه‌های عصبی بطور کامل و با دقت 100% همراه بود و در سطح دوم یعنی تشخیص منطقه‌ی آسیب دیده، شبکه‌عصبی با تابع انتقال تانژانت‌هایپربولیک 93% موفقیت داشت و ماشین‌ بردارپشتیبان با موفقیت 68% همراه ‌بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Laboratory evaluation of suspension bridge health based on intelligent close-range photogrammetry

نویسندگان English

Arsalan Granmayeh
PEYMAN HOMAMI
Seyed Hossein Hosseini Lavassani
Kharazmi University
چکیده English

In recent decades, the science of structural health monitoring has played a key role in preventing damage and extending the life of structures. To conduct behavioral assessment, it is desirable to use tools that achieve sufficient accuracy with low cost. The processing of behavioral data requires methods that are able to identify and correctly troubleshoot different levels of damage from existing information.

Nowadays, sensors are used to measure the behavior of structures including deformations and displacements and even deflections, but these sensors have some weak points. For example, Risk of damage to the sensor, pointwise and one-dimensional measuring, their data is difficult to analyze and using multiple or high-tech sensors becomes expensive.

Optical behavior measurement and close-range photogrammetric operations have recently received attention due to their low cost and good accuracy. This method has some advantages like Indirect contact with objects, high-speed image capture, easy access to convenient digital cameras, low viewing costs, and the ability to process composite and instant data with easy operation. In addition, the high flexibility of this method in measuring accuracy and design capability to achieve predetermined accuracy is an important feature of this tool.

Analytical methods are based on rules or equations that provide a clear definition of the problem. These methods work well in the cases which the rules are accurately clear and defined but there are many practical cases for which the rules are not known or it is very difficult to discover that calculations cannot be performed using analytical methods.

Neural network is a generalizable model, which is based on the experience of a set of training data and therefore free of explicit law. Neural networks have the ability to collect, store, analyze, and process large amounts of data from numerical analyzes or experiments. Therefore, they have the ability to predict and build diagnostic models to solve various engineering problems and tasks

In this paper, an attempt has been made to use this method to measure and troubleshoot laboratory model of a scaled suspension bridge that has a relatively complex behavior. For this purpose, the structure was subjected to uniform static loading in three step levels with three states: healthy and damaged in the deck and cables. Damages were created quite intentionally in the laboratory model, and from the information obtained, a database of bridge behavior in various situations was created. In order to assess the feasibility of using different methods in data processing and troubleshooting, first the data in the database were used in a simple linear method (direct comparison) and training in algorithms of machine learning methods. After that, deliberate damage was done again in the laboratory structure to allow testing the efficiency and accuracy of different methods. Finally, the accuracy, precision, and stability of the data processing methods of the support vector machine and artificial neural network were compared.

The results showed that by object bundle justification of two-dimensional optical behaver measurement with close-range photogrammetry, a guaranteed accuracy of 0.0021 mm could be achieved. Using intensity image processing seems helpful to ease the calculation. Using high number of nodes in hidden layer makes it more difficult and time-consuming to train the neural network. In the first level of processing, the detection of the presence or absence of damage was associated with the complete superiority of neural networks with 100% accuracy and in the second level, the detection of the affected area, depending on the type of processing, the neural network with hyperbolic tangent transfer function archived 93% accuracy and the support vector machine archived 68% of the accuracy.

کلیدواژه‌ها English

Structural health monitoring
Suspension Bridge
Intelligent Close Range Photogrammetry
Machine learning
Support vector machine
artificial neural network
1. Ansari, F., Sensing issues in civil structural health monitoring. 2005: Springer.
2. Boller, C., F.-K. Chang, and Y. Fujino, Encyclopedia of structural health monitoring. 2009: Wiley.
3. Ri, S., et al. 2012 Noncontact deflection distribution measurement for large-scale structures by advanced image processing technique, Materials Transactions. 53(2): p. 323-329.
4. Giurgiutiu, V., Structural health monitoring: with piezoelectric wafer active sensors. 2007: Elsevier.
5. Chatzi, E.N. and C. Papadimitriou, Identification methods for structural health monitoring. Vol. 567. 2016: Springer.
6. Gopalakrishnan, S., M. Ruzzene, and S. Hanagud, Computational techniques for structural health monitoring. 2011: Springer Science & Business Media.
7. Pawar, P.M. and R. Ganguli, Structural health monitoring using genetic fuzzy systems. 2011: Springer Science & Business Media.
8. Detchev, I., A. Habib, and M. El-Badry 2011 Estimation of vertical deflections in concrete beams through digital close range photogrammetry, The ISPRS Remote Sensing and Spatial Information Sciences.
9. Maas, H.-G. and U. Hampel 2006 Photogrammetric techniques in civil engineering material testing and structure monitoring, Photogrammetric Engineering & Remote Sensing. 72(1): p. 39-45.
10. Avci, O., et al. Convolutional Neural Networks for Real-time and Wireless Damage Detection. in Dynamics of Civil Structures, Volume 2: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019. 2019. Springer.
11. Goda, I., G. L'Hostis, and P. Guerlain 2019 In-situ non-contact 3D optical deformation measurement of large capacity composite tank based on close-range photogrammetry, Optics and Lasers in Engineering. 119: p. 37-55.
12. Esmaeili, F., et al. 2019 Evaluation of close-range photogrammetric technique for deformation monitoring of large-scale structures: a review, Journal of Geomatics Science and Technology. 8(4): p. 41-55.
13. Rafiq, M., G. Bugmann, and D. Easterbrook 2001 Neural network design for engineering applications, Computers & Structures. 79(17): p. 1541-1552.
14. Knezevic, M., et al. 2018 Artificial Neural Networks and Fuzzy Neural Networks for Solving Civil Engineering Problems, Complexity. 2018.
15. Nielsen, M.A., Neural networks and deep learning. Vol. 2018. 2015: Determination press San Francisco, CA.
16. Kohonen, T. 1988 An introduction to neural computing, Neural networks. 1(1): p. 3-16.
17. Svozil, D., V. Kvasnicka, and J. Pospichal 1997 Introduction to multi-layer feed-forward neural networks, Chemometrics and intelligent laboratory systems. 39(1): p. 43-62.
18. Hagan, M.T., H.B. Demuth, and M. Beale, Neural network design. 1997: PWS Publishing Co.
19. Park, S., et al. 2015 3D displacement measurement model for health monitoring of structures using a motion capture system, Measurement. 59: p. 352-362.
20. Soto-Zamora, M.A., et al., Application of Digital Close-Range Photogrammetry to the Modeling of Heritage Structural Elements for Its Analysis by FEM, in Structural Analysis of Historical Constructions. 2019, Springer. p. 342-350.
21. Chojaczyk, A.A., et al. 2015 Review and application of artificial neural networks models in reliability analysis of steel structures, Structural safety. 52: p. 78-89.
22. Singh, V., et al. 2019 Feasibility of artificial neural network in civil engineering, Int. J. Trend Sci. Res. Dev. 3: p. 724-728.
23. Feng, C., et al. 2019 Structural damage detection using deep convolutional neural network and transfer learning, KSCE Journal of Civil Engineering. 23(10): p. 4493-4502.
24. MathWorks.com.