شبیه‌سازی عددی الگوی جریان پیرامون پایه پل منفرد با حضور صفحات مستغرق بالادستی مستقر در قوس 180 درجه تند با بستر آبرفتی تحت تأثیر فاصله صفحات مستغرق از هم و پایه پل

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران
2 گروه مهندسی عمران ، دانشگاه خلیج فارس
3 دانشکده فنی مهندسی، دانشگاه خلیج فارس بوشهر، ایران.
چکیده
در این تحقیق از مدل عددی SSIIMبرای بررسی الگوی جریان، کانتورهایی سرعت، قدرت جریان و پارامترهای آشفتگی در اطراف پایه­ پل عمودی با حضور صفحات مستغرق با طول هم­پوشانی مختلف، و قرارگیری صفحات مستغرق از پایه­ی پل و از یکدیگر در شش فاصله مختلف، در قوس 180 درجه تند استفاده گردید و مقایسه نتایج تحلیل عددی و آزمایشگاهی انجام شد. تطابق داده­های عددی و آزمایشگاهی بیانگر عملکرد مناسب مدل عددی SSIIM در مدل‌سازی الگوی جریان در مسئله مورد بررسی می­باشد. نتایج تحقیق نشان داد که محدوده­ی قدرت جریان ثانویه، در تمامی مدل­های با حضور صفحات مستغرق از 5/10 تا 12 درصد اندازه­گیری شد. در حالتی که صفحات مستغرق هم­پوشانی با هم نداشتند و استقرار صفحات مستغرق در فاصله­ی 5/2 برابر قطر پایه از پایه و فاصله معادل 2 برابر قطر پایه از همدیگر و در بالادست پایه بوده کمترین مقدار و در حالت هم­پوشانی 100 درصد صفحات، در آرایش استقرار صفحات مستغرق در فاصله 5 برابر قطر پایه از آن و فاصله 2 برابر قطر پایه از همدیگر و در بالادست پایه بیشترین مقدار خود را داشته است. همچنین تغییرات تنش برشی بعد از ایجاد آبشستگی موضعی محاسبه شد. تنش برشی ماکزیمم از ابتدای قوس تا نزدیکی خروجی قوس به سمت جداره داخلی قوس متمایل بود و در محدوده خروجی قوس تنش برشی ماکزیمم به سمت میانه قوس و سپس نیمه­ی دوم قوس منتقل گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical simulation of the flow pattern around a single bridge pier with upstream of submerged vanes in sharp 180-degree bend with an alluvial bed under the influence of submerged vanes and the bridge pier

نویسندگان English

chonoor abdichooplou 1
Mohammad Vaghefi 2
yaser safarpoor 3
1 Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
2 Civil Engineering Department, Persian Gulf University, Bushehr, Iran.
3 Civil Engineering Department, Persian Gulf University, Bushehr, Iran
چکیده English

In this research, the SSIIM numerical model is investigated to investigate the flow pattern, velocity meters, current strength and turbulence parameters around the pier of the vertical bridge with submerged vanes. The parameters of different overlap length, and the distance of the submerged vanes upstream from the pier of the bridge and from each other in sharp 180-degree bend in the steep-ratio hydraulic radius 2 with a height of 90 cm and a width of 100 cm and a length of straight direction upstream and downstream of the bend respectively 6.5 m and 5 m, were analyzed. SSIIM software was used to investigate the flow field around the around the cylindrical bridge pier and upstream submerged vanes. The K-ε turbulence model was also used to solve the Navier-Stokes equations. In order to validate, the results of the simulated model were compared with the available experimental data in the case of submerged vanes located upstream of the bridge pier. The match between the numerical and experimental data indicated the proper performance of the SSIIM numerical model in modeling the flow pattern in the problem under study. The results showed that the range of secondary flow power was measured in all models with the presence of upstream submerged vanes from 10.5 to 12%. In the case where the submerged vanes did not overlap with each other and the placement of the submerged vanes at a distance of 2.5 times the pier diameter from the pier and a distance equal to 2 times the pier diameter from each other and above the pier is the lowest value and in the overlapping state 100 Percentage of vanes, in the arrangement of submerged vanes at a distance of 5 times the pier diameter and 2 times the pier diameter of each other and above the pier has its highest value. Shear stress changes after local scouring were also calculated. The maximum shear stress from the beginning of the bend to near the bend exit was inclined towards the inner bank of the bend and in the bend output range the maximum shear stress was transferred to the middle of the bend and then the second half of the bend. The results also showed that the tangential velocity was increased as the immersion range of the submerged vanes and the pier approached, so that the maximum tangential velocity occurred in the passage through the pier. As the height from the initial bed increases, the maximum positive tangential velocities increase. The results also showed that at the level near the bed, the radial flow is towards the inner bank. The greatest difference in radial velocities, as opposed to tangential velocities, is observed near the bed. The highest changes in the maximum landing number are related to models with submerged vanes at a distance of 7.5 times the pier diameter, which by changing the distance between the vanes from 1 to 1.5 times the pier diameter from each other, an increase of 12.5% And by changing the distance of the submerged vanes to 2 times the pier diameter from each other, it decreases by 11%.

کلیدواژه‌ها English

Bridge pier
submerged vanes
Flow pattern
180-degree bend
SSIIM numerical model
1. Odgaard A.J. & Kennedy J.F. 1983. River-Bend Bank Protection by Submerged Vanes. Journal of Hydraulic Engineering, 109(8), pp.1161-1173. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:8(1161)
2. Lauchlan CS. 1999. Pier scour countermeasures Ph.D. Thesis. University of Auckland. New Zealand.
3. Johnson P.A. Hey R.D. Tessier M. & Rosgen DL. 2001. Use of vanes for control of scour at vertical wall abutments, Journal of Hydraulic Engineering, ASCE, 127(9), pp.772-778. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:9(772)
4. Vaghefi M. Safaripour N. Zarei E. Mahmoudi A. & Hashemi S.Sh. 2018. Experimental investigation on the effect of overlapping upstream submerged vanes on bend topography with a bridge pier. Modares Civil Engineering Journal (M.C.E.J), 15(2), pp.245-255. "(In Persian)"
5. Zarei E. Vaghefi M. & Hashemi. S.Sh. 2019. Bed topography variations in bend by simultaneous installation of submerged vanes and single bridge pier. Arabian Journal of Geosciences, 12(6), pp.1-10. https://doi.org/10.1007/s12517-019-4342-z
6. Safaripour N. Vaghefi M. & Mahmoudi. A 2020. Experimental Study of the Effect of Submergence Ratio of Double Submerged Vanes on Topography Alterations and Temporal Evaluation of the Maximum Scour in a 180-Degree Bend with a Bridge Pier Group. International Journal of River Basin Management, pp.1-34. https://doi.org/10.1080/15715124.2020.1837144
7. Giri S. Shimizu Y. & Surajata B. 2004. Laboratory measurement and numerical simulation of flow and turbulence in a meandering-like flume with spurs. Flow Measurement and Instrumentation, 15(5-6), pp.301-309. https://doi.org/10.1016/j.flowmeasinst.2004.05.002
8. Naji Abhari M. Ghodsian, M. Vaghefi, M. & Panahpur, N. 2010. Experimental and numerical simulation of flow in a 90-degree bend. Flow Measurement and Instrumentation, 21(3), pp.292-298. https://doi.org/10.1016/j.flowmeasinst.2010.03.002
9. Kasvi E. Laamanen L. Lotsari, E. & Alho P. 2017. Flow patterns and morphological changes in a sandy meander bend during a Flood-Spatially and temporally intensive ADCP measurement approach. Water, 9(2), pp.106. https://doi.org/10.3390/w9020106
10. Akbari M. Vaghefi, M. & Chiew, Y. M. 2021. Effect of T-shaped spur dike length on mean flow characteristics along a 180-degree sharp bend. Journal of Hydrology and Hydromechanics, 69(1), pp.98-107. DOI: https://doi.org/10.2478/johh-2020-0045
11. Wilson C.A.M.E., Boxall J. B. Guymer I. & Olsen N. R. B. 2003. Validation of a three dimensional numerical code in the simulation of pseudo-natural meandering flows. Journal of Hydraulic Engineering, ASCE, 129(10), 758-767. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:10(758)
12. Ghobadian R. & Mohammadi K. 2011. Simulation of subcritical flow pattern in 180 uniform and convergent open-channel bends using SSIIM 3-D model. Water Science and Engineering, 4(3), pp.270-283. https://doi.org/10.3882/j.issn.1674-2370.2011.03.004
13. Nekoufar K. & Kouhpari H. 2013. Control and Decrease the Scouring of Bridge Pier by Method of Non-Submerged Plates Using SSIIM Software. Acta Technica Corviniensis-Bulletin of Engineering, 6(4), pp.35.
14. Ehteram M Mahdavi Meymand A. 2015. Numerical modeling of scour depth at side piers of the bridge. Journal of Computational and Applied Mathematics, 280, pp.68–79. https://doi.org/10.1016/j.cam.2014.11.039
15. Asadollahi M. Vaghefi, M & Tabibnejad Motlagh M.J 2019. Experimental and Numerical Comparison of Flow and scour Patterns around a Single and Triple Bridge Piers Located at a sharp 180 degrees Bend. Scientia Iranica. doi:10.24200/SCI.2019.5637.1391
16. Rasaei M. Nazari S. & Eslamian, S. 2020. Experimental and numerical investigation the effect of pier position on local scouring around bridge pier at a 90° convergent bend. Journal of Hydraulic Structures, 6(1), pp.55-76. doi: 10.22055/JHS.2020.32753.1134
17. Asadollahi M. Vaghefi, M & Akbari M. 2020. Effect of the position of perpendicular pier groups in a sharp bend on flow and scour patterns: numerical simulation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8), pp.1-15. https://doi.org/10.1007/s40430-020-02503-2
18. Olsen N.R.B. 2014. A three-dimensional numerical model for simulation of sediment movement in water intakes with multi-block option, Department of Hydraulic and environmental Engineering, Norwegian University of Science and Technology, User's manual, Norway, pp.172-173.
19. Abdi Chooplou Ch. Vaghefi M. & Meraji S.H. 2018. Study of Streamlines under the Influence of Displacement of Submerged Vanes in Channel Width, and at the Upstream Area of a Cylindrical Bridge Pier in a 180 Degree Sharp Bend. Journal of Hydraulic Structures, 4(1), pp.55-74. doi: 10.22055/JHS
20. Shukry A. 1950. Flow around Bends in an open Flume. Transactions of the American Society of Civil Engineers, 115(1), pp.751-779. https://doi.org/10.1061/TACEAT.0006426
21. Barbhuiya A.K. & Dey S. 2003. Measurement of turbulent flow field at a vertical semicircular cylinder attached to the sidewall of a rectangular channel, Journal of Flow Measurement and Instrumentation, 15(2), pp.87-96.
https://doi.org/10.1016/j.flowmeasinst.2003.11.002