بررسی عدم قطعیت نتایج آزمایش‌های ارتعاش محیطی در روش‌های زیرفضای تصادفی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
استادیار، دانشکده فنی، دانشگاه آزاد اسلامی، سراب، ایران
چکیده
در روش­های زیرفضای تصادفی مهترین عامل تاثیرگذار بر مشخصات دینامیکی مستخرج، ابعاد ماتریس هانکل بوده که شامل تعداد سطرها و ستون­های آن است. استفاده از ابعاد کوچک ماتریس احتمال عدم شناسائی قطب­های پایدار را داشته و انتخاب ابعاد بسیار بزرگ علاوه برآنکه احتمال بوجود آمدن قطب­های مجازی و بایاس را افزایش داده، باعث افزایش هزینه محاسباتی نیز می­گردد. از اینرو در این تحقیق قصد براین است که تعداد سطر­های بلوکی و ستونهای مطلوب ماتریس هانکل در روش زیرفضای تصادفی متعادل طوری محاسبه شود که ضمن پوشش قطب­های موجود، هزینه محاسباتی حداقلی نیز داشته باشد. برای این منظور از معیار عدد شرطی ماتریس هانکل و اندیکاتور انرژی استفاده خواهد شد. مراحل کار بدین طریق است که با استفاده از اندیکاتور انرژی، حداکثر مرتبه موثر سیستم برای سطرهای بلوکی مختلف ماتریس هانکل استخراج گردیده و سپس نمودار ماکزیمم عدد شرطی برای آن­ها رسم می­شود. تعداد سطرهای بلوکی مطلوب ماتریس هانکل از همگرائی معیار عدد شرطی با توجه به تعریف این معیار استخراج می­شود. به منظور صحت­سنجی روش پیشنهادی، از نتایج آزمایش ارتعاش محیطی پل روگذر شهر نمین که توسط محققین این مقاله انجام گرفته، استفاده شده است. نتایج این تحقیق نشان دهنده این است که از بُعد 352، نمودار عدد شرطی نسبت به تغییر سطرها بلوکی حساسیت خود را از دست داده که بعنوان بعد مطلوب انتخاب شده است. همچنین در بعد بهینه با استفاده از تغییرات انحنای نمودار اندیکاتور انرژی مرتبه 66 بعنوان مرز بد-شرطیدگی ماتریس سیستم، محاسبه گردیده که پیدایش مودهای بایاس و محاسباتی در نمودار پایداری، موید مرتبه محاسبه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Uncertainty of Ambient Vibration Test Results in Stochastic Subspace Methods

نویسندگان English

M. Pourgholi
M. Mohammadzadeh Gilarlue
M. Ghanadi
Department of Civil Engineering, Sarab Branch, Islamic Azad University, Sarab ,Iran
چکیده English

In stochastic subspace methods, the most important factor influencing the dynamic specifications is the dimensions of the Hankel matrix include the number of rows and columns. Using small matrix dimensions is unlikely to identify existing poles, and selecting very large dimensions not only increases the likelihood of virtual and bias poles but also increases computational costs. In this study, it is intended that the optimal dimensions of the Hankel matrix in the balanced stochastic subspace method be calculated in such a way that in addition to covering the existing poles, it also has a minimum computational cost. For this purpose, the condition number of the Hankel Matrix and Energy Indicator is used in two steps. The steps are as follows: First, calculate the optimal order of each cycle, and then use the optimal order to draw the condition number of the system matrix for different dimensions and calculate the desired dimension from its convergence. To verify the accuracy of the proposed method, the ambient vibration test of the Namin Entrance Bridge has been used. This bridge is located at the entrance of Namin city, 25 km from the center of Ardabil province, Iran, which includes two spans of 27.10m with a concrete deck. The deck of the bridge is located on beams with I sections, which are 2.5m away from each other, and the whole set of beams and deck is located on a system of foundations and piles with a diameter of 120cm. This bridge being the only entrance to the city and is exposed to various traffic loads, it was necessary to monitor the dynamic characteristics of the bridge as modal frequencies and damping ratios to evaluate the performance and ensure the health of the bridge structure. According to the numerical analysis and the length of the data (12000), the minimum order and the maximum number of cycles are 22 and 55, respectively. By diverging the curvature of the energy indicator graph, the optimal order is determined in the initial 5-12% of the singular values of cycles. For example, the maximum order of the 6th cycles was obtained, 28-62. Also, from the convergence of the maximum condition number of cycles from the 8th cycle, the optimal dimension was selected 352. In a general summary, it can be said that the use of the energy indicator concept in finding the effective order of the stability diagram has a significant effect on reducing the uncertainty of the extracted results. So that from the three identified stable poles, two poles have been extracted in the effective-order area. Also, using the concept of conditional number to find the optimal dimension of the system was effective, so that by drawing a stability diagram for the 15th cycle, it was found that the identified modal characteristics were not significantly different from the results of the optimal cycle (8th). Finally, the extracted modal properties have an acceptable agreement with the numerical model and frequency domain decomposition method (FDD). The modal frequencies of both methods (FDDand B-SSI) have a good correlation but the damping ratios were very different. In frequency domain methods the damping ratios being very sensitive to the quality of data collection, one can expect that the results of the subspace method are closer to reality.

کلیدواژه‌ها English

system identification
Hankel matrix
Desired System dimensional
Stability Chart
Condition Number
1. Deraemaeker, A., et al., Vibration-based structural health monitoring using output-only measurements under changing environment. Mechanical systems and signal processing, 2008. 22(1): p. 34-56.
2. De Moor, B.L., On the number of rows and columns in subspace identification methods. 2003.
3. Wu, C., et al., Stabilization diagrams to distinguish physical modes and spurious modes for structural parameter identification. Journal of Vibroengineering, 2017. 19(4): p. 2777-2794.
4. Mrabet, E., M. Abdelghani, and N. Ben Kahla, A new criterion for the stabilization diagram used with stochastic subspace identification methods: an application to an aircraft skeleton. Shock and Vibration, 2014. 2014.
5. Rainieri, C. and G. Fabbrocino, Influence of model order and some block rows on accuracy and precision of modal parameter estimates in stochastic subspace identification. International Journal of Lifecycle Performance Engineering 10, 2014. 1(4): p. 317-334.
6. Priori, C., M. De Angelis, and R. Betti, On the selection of user-defined parameters in data-driven stochastic subspace identification. Mechanical Systems and Signal Processing, 2018. 100: p. 501-523.
7. Li, S., et al., Parametric analysis of SSI algorithm in modal identification of high arch dams. Soil Dynamics and Earthquake Engineering, 2020. 129: p. 105929.
8. Tarinejad, R. and M. Pourgholi, Processing of Ambient Vibration Results using Stochastic Subspace Identification based on Canonical Correlation Analysis. Modares Mechanical Engineering, 2015. 15(7).
9. Tarinejad, R. and M. Pourgholi, Modal identification of arch dams using balanced stochastic subspace identification. Journal of Vibration and Control, 2018. 24(10): p. 2030-2044.
10. Chen, C.-T., Linear system theory, and design. 1995: Oxford University Press, Inc.
11. Chen, H.-F., P. Kumar, and J. Van Schuppen, On Kalman filtering for conditionally Gaussian systems with random matrices. Systems & Control Letters, 1989. 13(5): p. 397-404.
12. Peeters, B., System Identification and Damage Detection in Civil Engeneering, in Faculteit Toegepaste Wetenschappen Arenbergkasteel. 2000, Katholieke Universiteit Leuven: Heverlee (Belgium).
13. Katayama, T., Subspace methods for system identification. 2006: Springer.
14. Desai, U.B., D. Pal, and R.D. Kirkpatrick, A realization approach to stochastic model reduction. International Journal of Control, 1985. 42(4): p. 821-838.
15. Van Overschee, P. and B.L. De Moor, Subspace identification for linear systems: theory, implementation, applications. Vol. 3. 1996: Kluwer academic publishers Dordrecht.