تأثیر عرض کریدور سازۀSFM بر افزایش میزان رسوبات تخلیه‌شده از مخزن

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه زنجان- گروه مهندسی عمران
چکیده
مخازن سدها با هدف کنترل سیلاب، ذخیره‌ و تأمین آب برای مصارف پایین دست، تولید انرژی و یا امور تفریحی احداث می‌شوند؛ از این ‌رو حفظ و نگهداری مخازن و به حداقل رساندن تلفات حجم مخزن در اثر ترسیب رسوبات دارای اهمیت بالایی است. در این مقاله راهکاری برای افزایش راندمان تخیله­ی رسوبات ته‌نشین شده ارائه شده است که در این روش سازهای موسوم به سازه‌ی SFM[1] متشکل از دو ردیف شمع موازی در قسمت بالادست دریچه‌ی تحتانی به کف مخزن نصب میگردد. در تحقیق آزمایشگاهی حاضر یک تا شش جفت شمع‌، با نفوذپذیری 5/37% در دو ردیف موازی به فواصل 4، 8، 16 و 24 سانتیمتر از هم‌دیگر نصب شد تا با عبور جریان آب از پیرامون شمعها و نیز در امتداد کریدور ایجاد شده توسط دو ردیف شمع، علاوه بر تولید گردابهها، منجر به اندرکنش متقابل خطوط جریان و افزایش سرعت نسبی آب در پیرامون شمع‌ها و نیز امتداد کریدور گردد. نتایج نشان داد که در بهینه‌ترین حالت استفاده از سازه‌ی SFM یعنی کریدور با عرض 8 سانتیمتر، حجم رسوبات تخلیه شده از مخزن تا میزان 261% نسبت به مقدار مشابه در حالت شاهد (بدون سازه‌ی SFM) افزایش می‌یابد.


[1] Sediment Flushing Motivator

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Impact of corridor width of SFM structure on reservoirs’ flushed sediment increment

نویسندگان English

Mahdi Fard Shirayeh
Saeed Abbasi
The University of Zanjan, School of Civil Engineering
چکیده English

Abstract: Dam reservoirs are constructed in order to flood control, reserve and provide water for downstream use, energy production and/or recreational purposes. Sedimentation is one of the most important operational conflicts in the world; surface run-off water erodes and carries the sediments on their route to the downstream all the time. Because sedimentation in reservoirs would reduce its useful volume, to reserve and retain the present reservoirs and to minimize the dissipation of reservoir volume because of sedimentation is very important. As a result, presentation of an appropriate method for increasing the efficiency of pressurized sediment flushing could be a significant way in increasing the useful lifetime of dams and also in surviving the pools with less water wasting. In this manner, using some hybrid method for increasing the efficiency of sediment flushing could be highlighted. At present, the efficiency of sediment flushing from outlet gates is very low. In this paper, a new method to increase the efficiency of sediment flushing is presented in which a structure namely SFM structure consisted of two parallel piles rows is installed on reservoir bed at the upstream of outlet gate. In this experimental research one to six pairs of piles with a permeability of 37.5% in two parallel rows at distances of 4, 8, 16 and 24 cm from each other were installed. The water flow will exit through the outlet gate after passing among the piles. Redirection of streamlines around the piles and also passing the flow along the corridor will cause some horseshow and wake vortices and also will cause the situation so as the sediments will rise and start to move. This will make the streamlines to interact and the proportional velocity of water to increase along the corridor and as a result, it is anticipated that more sediments will flush from the outlet gate and the flushing cavity volume will expand toward upstream. In this research it is noted that the SFM structure to be applicable and easy to construct inside a full-scale reservoir; so despite Madadi et al (2016), there is no ceiling on top of the columns because in prototype scale construction of such huge roof is not applicable. Because the maximum velocity gradient is normal to the outlet gate based on flow hydrodynamics, the arrangement of the columns is proposed to be perpendicular to the gate axis. Uniform non-cohesive sandy aggregates with a mean size of 0.67 mm were utilized as packed sediment in the reservoir. The results showed that the flushed sediment from the reservoir increases by 261% when the SFM structure with corridor width of 8 cm is utilized compared to that of the reference test (without SFM structure). Based on economic considerations and results of the present study (direct and indirect costs of piles construction) one can see that the four pairs of piles with permeability of 37.5% and row distances of 2Do (L/Do=2) is the most optimum case among the tested cases of SFM structure in increasing the efficiency of sediment flushing around and through outlet gate in reservoirs. Considering the results, the SFM structure is an applicable structure and further investigations should be performed in order to find its design charts.

کلیدواژه‌ها English

sediment flushing efficiency
SFM structure
corridor width
flushing
reservoir
[1]. Toniolo H. and Parker G. 2003 1D Numerical Modeling of Reservoir Sedimentation. Proceeding, IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Barcelona, Spain, pp 257-468.
[2]. Brandt S. A. 2000 A review of reservoir desiltation. International journal of sediment research, Vol 15, pp 321-342.
[3]. Atkinson E. 1996 The feasibility of flushing sediment from the reservoir. Report ID 137, p 99.
[4]. Dodaran A., Park S. K., Mardashti A. and Noshadi M. 2012 Investigation of Dimension Changes in Under Pressure Hydraulic Sediment Flushing Cavity of Storage Dams Under Effect of Localized Vibrations in Sediment Layers. International journal of Ocean System Engineering, 2(2), pp 21.
[5]. Haudhry M. A. and Rehman H. R. 2012 Worldwide experience of sediment flushing through reservoirs. Journal of Engineering and Technology Management, 31(3):395-408.
[6]. Lai J. S. 1994 Hydraulic flushing for reservoir desiltation. Ph.D. Thesis, University of California, USA.
[7]. Emamgholizadeh S., Bina M. and Ghomeshi M. 2007 The effect of reservoir water level and the outflow discharge through bottom outlet on the sediment removal in pressurized flushing. Journal of Agricultural Science, 30 (4:A):61-76.
[8]. Madadi M. R., Rahimpour M. and Qaderi K. 2016 Improving the Reservoir’s Pressurized Flushing Efficiency by Connecting PBC Structure to the Dam Bottom Outlet. DOI:http://dx.doi.org/10.22092/aridse.2016.106414, p 71- 86 (In Persian).
[9]. Crookeston B. M. 2008 A laboratory study of streambed stability in bottomless culverts. M. Sc. Thesis, Civil and Environmental Engineering, Utah State University, Logan, Utah.
[10]. Abdollahpour M. 2012 The effect of eddy flow on the sediment desilting from the reservoir’s bottom outlet. M. Sc. Thesis. Faculty of Agriculture, University of Tabriz, Tabriz, Iran (In Persian).
[11]. Meshkati M. E., Dehghani A. A., Naser G., Emamgholizadeh S. and Mosaedi A. 2009 Evolution of developing flushing cone during the pressurized flushing in reservoir storage. World Academy of Science, Engineering and Technology, 58:1107-1111.
[12]. Boeriu P., Roelvink D., Mulatu C. A., Thilakasiri C. N., Moldovanu A. and Margaritescu M. 2011 Modeling the flushing process of reservoirs. Proceedings of International Conference on Innovations, Recent Trends and challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development.
[13]. Samadi-Rahim A. 2011 Experimental investigation of the effect of number and shape of bottom outlets on the size of flushing cone and the performance of pressure flushing in storage dam. M. Sc. Thesis, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran (In Persian).
[14]. Fruchart F. and Camenen B. 2012 Reservoir sedimentation: different type of flushing-friendly flushing: example of Genissiat dam flushing. ICOLD international Symposium on Dams for a Changing World, Japan.
[15]. Emamgholizadeh S., Bateni S. M. and Jeng D. S. 2013 Artificial intelligence-based estimation of flushing half-cone geometry. Engineering Applications of Artificial Intelligence, Vol 26 (10), pp 2551-2558.
[16]. Khosronejad A., Rennie C. D., Salehi Neyshabouri A. A. and Gholami I. 2008 Three-dimensional numerical modeling of reservoir sediment release. Journal of Hydraulic Research, 46 (2):209-223.
[17]. Ahn J., Yang C. T., Boyd P. M., Pridal D. B. and Remus J. I. 2013 Numerical modeling of sediment flushing from Lewis and Clark Lake. International journal of sediment research, 28, 182-193.
[18]. Haun S. and Olsen N. R. B. 2012 Three-dimensional numerical modelling of the flushing process of the Kali Gandaki hydropower reservoir. lake and reservoir management, 17(1):25-33.
[19]. Tofighi S., Samani J. M. V. and Ayyubzadeh S. A. (2015) Pressure flushing with expanding bottom outlet
channel within dam reservoir. Modares Civil Engineering journal, 15(2):127-206 (In Persian).
[20]. Powell D. N. and Khan A. 2012 Scour upstream of a circular orifice under constant head. Journal of Hydraulic Research, 50(1): 28-34.
[21]. Powell D. N. and Khan A. 2014 Flow field upstream of an orifice under fixed bed and equilibrium scour conditions. Journal of Hydraulic Engineering, 141(2):04014076.
[22]. Madadi M., Rahimpour M. and Qaderi K. 2016 Sediment flushing upstream of large orifices: an experimental study. http: //dx.doi.org/10.1016/j. flowmeasinst.2016.10.007.
[23]. Fard shirayeh M, Abbasi S. 2019 Experimental investigation of impact of SFM structures permeability on sediment flushing efficiency from outlet gates in reservoirs. Journal of Hydraulics, Vol 14(2), (In Persian)
[24]. Melville B. W. and Chiew Y. M. 1999 Time scale for local scour at bridge piers. Journal of Hydraulic Engineering | ASCE Library, 125(1): 59-65.
[25]. Scheuerlein H., Tritthart M. and Nunez Gonzalez F. 2004 Numerical and physical modeling concerning the removal of sediment deposits from reservoirs. Conference Proceeding of Hydraulic of Dams and River Structures, Tehran, Iran, pp 245-254.
[26]. Morris G. L. and Fan J. 2010 Reservoir Sedimentation Handbook: Design and management of dams, reservoirs, and watersheds for sustainable use. McGraw-Hill, New York, p 784.