برآورد آزمایشگاهی رابطه فراآب در پایه پل دایره ای و گرده ماهی شکل با در نظر گرفتن پارامترهای موثر

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه یزد
2 هییت علمی دانشگاه یزد
چکیده
پل ها از جمله مهمترین و پرکاربردترین سازه های رودخانه ای هستند که از دیرباز مورد استفاده قرار گرفته اند. با احداث پل در مسیر رودخانه معمولا عرض طبیعی رودخانه کاهش یافته و مانعی در برابر جریان به وجود می آید که سبب می شوند عمق آب در بالادست پایه بیشتر از عمق نرمال شود. این افزایش عمق را فراآب می نامند که در طراحی پل ها بسیار حائز اهمیت است. بدین منظور در تحقیق حاضر به کمک مدل آزمایشگاهی و بکارگیری پایه پل هایی با سطح مقطع دایره ای و گرده ماهی شکل، اثرات عدد فرود، میزان تنگ شدگی مسیر جریان()، تاثیر زاویه پایه نسبت به جریان، شکل پایه و نسبت طول به ضخامت پایه بر روی پدیده فراآب مورد بررسی قرار گرفته است. با بررسی عدد فرود در تنگ شدگی های مختلف مشخص شد که به طور کلی میزان پدیده فراآب با عدد فرود رابطه مستقیم دارد. در زاویه 20 درجه و با تغییر فرود به میزان 2/. در تنگ شدگی 877/. تغییرات نسبی سطح آب در بالادست پایه پل() برابر با 12/0 بوده و در تنگ شدگی 631/0 مقدار آن برابر با 57/0 می باشد. نتایج نشان داد در فرود ثابت، با افزایش تعداد پایه ها در عرض ثابت کانال، میزان فراآب افزایش می یابد. همچنین نتایج حاکی از آن است که مقدار بالاآمدگی آب متاثر از شکل پایه پل نیز می باشد و تغییر زاویه قرارگیری پایه ها نیز بر شکل گیری این پدیده تاثیرگذار می باشد. به طوریکه با افزایش زاویه پایه پل در حالت گرده ماهی از 15 به 20 درجه مقدار فراآب افزایش بیشتری نسبت به تغییر زاویه از 10 به 15 درجه دارد. در نهایت با در نظرگرفتن همه پارامترها، روابط تجربی جهت برآورد فراآب در هر دو مدل پایه پل بدست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental estimation of afflux equation in circular and semicircular nose and tail shape of piers by considering effective parameters

نویسندگان English

saba nikkhah 1
nosratolah amanian 2
fateme avazpoor 1
1 Yazd uni
2 faculty member
چکیده English

Bridges are one of the most important river structures that have been used for many years. With the construction of bridges, the natural width of the river decreases and this results in a barrier in water flow. This causes the depth of water upstream of the bridge to exceed the normal depth and this increase in depth is called afflux, which is an important factor to consider when designing bridges. In this present study, two kinds of bridge piers of different shapes were used; circular and semicircular nose and tail. Using laboratory modeling and the two types of bridge piers, the effect of Froude number, the amount of flow path narrowing (σ), and the effect of the angle of bridge pier with respect to flow direction, pier shape, and ratio of length to thickness of the bridge pier were examined. Experiments were done in a flume with 15 m length, 30.9 cm width, and a 45 cm height. Results show that when Froude number is increased, afflux is increased as well. However, these changes are not the same in the two different bridge pier shapes. By examining Froude number in different path narrowing, it was found that generally, the amount of afflux is directly related to the Froude number. This survey also investigated the length-thickness ratio (L/t) effect of piers. For this purpose, different dimensions of piers, with widths of 3.8 cm and lengths of 15.2, 26.6, and 38 cm were investigated. For circular shape bridge piers, 3.8 cm diameter piers were used. When Froude number is constant, afflux is increased by increasing the number of piers across the channel. Results indicate that the amount of water rising is different in the two kinds of bridge piers (in circular shape and semicircular nose and tail piers). Additionally, changing the direction of piers also affects the formation of this phenomenon (afflux). Usually, piers are installed so that their mounting degree with flow direction is 90 degrees, but sometimes it is necessary to install them in another degree. Therefore, the use of skewed bridge piers with various angles can be important for the design. In this study, it was shown that , the angle of the pier, strongly affects the amount of afflux. It was illustrated that afflux increases more when changes are among higher degrees. For instance, when is changed from 15 to 20 compared to changing from 10 to 15, the increase in afflux is greater. According to results, afflux is higher in semicircular nose and tail piers than in circular shapes with the same Froude number. Also, as Froude number increases, the slope of the afflux curve of circular piers becomes smaller than that of the semicircle nose and tail piers.

Investigation of the length-thickness ratio (L/t) effect of piers on afflux shows that this parameter is negligible in (when pier direction is parallel to flow direction). However, as is increased, this parameter affects afflux more. Finally, by considering all the parameters, the experimental relationships for estimating the amount of afflux were developed for both bridge pier shapes utilized in the study.

کلیدواژه‌ها English

Experimental model
circular and semicircle nose and tails shape of piers
estimation of afflux
SPSS software
[1]. Abrishami, j. Hoseini, M. 1372. Hydraulic of open channels, Mashhad Publication. (In Persian).
[2]. Montazer, Gh. Ghodsian, M. Nasiri, F. Javan, M. Eghbalzade, A. Intelligent prediction of the super conducting of bridge base using artificial neural network based on radial base function, Engineering Technical Journal of Modares. NO14,2003. (In Persian).
[3]. Lamb,R . and Mantz,R., Atabay,s Benn J.(1985) Rercent Advances im modeling flood water levels at bridges and culverts. J. Hydr. Engrg., 124(5), pp:480-4930
[4]. Yarnell, D.L., Pile trestles as channel obstructions, Technical Bulletin 429, U.S.A, Department of Agriculture, Washington, 1934.
[5]. Bradley, J. (1978) Hydraulics of Bridge Waterways, 2nd Edition, US Dept. of Transportation, FHWA, US. (Published electronically in 1978.)
[6]. Mansouri, A. Yousefi, H. Laboratory experiment of afflux in upstream of bridges. Eighth Iranian Hydraulic Conference. Tehran university, 1388. (In Persian).
[7]. D.Johnson Victor, (1973), Essentials of Bridge Engineering, Bridge-Design and construction
[8]. Ghodsian, M. and Shfieefar, M., Effect of Shape of Bridge Pier on Afflux, Proceedings of 13th IAHR-ADP congress, Singapore, August 2002.
[9]. Masoud Ghodsian, Mehdi Shafieefar, and Seyed Javad Hashemi. “Afflux due to rectangular bridge pier”. Water Resources, 2000.
[10]. Randall and Holley,Backwater Effects of Bridge piers in subcritical Flow, 2001.
[11]. Seckin, G., Knight, D.W., Atabay, S. and Seckin N. (2004) Bridge afflux experiments in compound channels, Unpublished Technical paper presented for JBA Consulting Engineers & Scientists and the Environment Agency.
[12]. Galip Seckin, Mevlut Sami Akoz, Murat Cobaner , Tefaruk Haktanir ,” Application of ANN techniques for estimating backwater through bridge constrictions in Mississippi River basin”, Advances in Engineering Software 40 (2009) 1039–1046.
[13]. USBPR (1978) Hydraulics of Bridge Waterways, US Dept. of Transportation, FHWA, Hydraulic Design Series No.1, published electronically in 1978.
[14]. USGS (1978) Hydrologic Investigation Atlases HA591 – HA611, Department of the Interior, Denver, CO, USA.
[15]. H. Liua, M. Lia, J. G. Zhou, R. Burrows. Bridge Afflux Predictions Using the Lattice Boltzmann Method. International Society for Environmental Information Sciences 2010 Annual Conference (ISEIS). © 2009 Published by Elsevier Ltd.
[16]. Serter Atabay, Jamal Abdalla, Galip Seckin, Maruf Mortula, “prediction of afflux of bridge construction with piers using artificial neural network”. 978-1-4577-0005-7/11©2011 IEEE
[17]. Hao Wang, Hongwu Tang, Xinhua Xu, Jianfeng Xiao, Dongfang Liang. “Backwater effect of multiple bridges along Huaihe River, China”. Water Management. 2016.
[18]. Nobakht, A. Ghodsian, M. Mehrain, M. Laboratory experiment of afflux due to lopsided pier and deviation to upstream. Eleventh Iranian Hydraulic Conference.Emam Khomeini University, 1395. (In Persian).