بررسی تأثیر سخت‌کننده‌های عرضی در فیوز برشی روی پارامترهای عملکرد لرزه‌ای قاب‌های برشی فولادی: اثرات ضریب رفتار، اضافه مقاومت و ظرفیت دوران

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشیار دانشکده مهندسی عمران دانشگاه زنجان، زنجان، ایران
2 دانشجوی دکترای سازه دانشکده مهندسی عمران دانشگاه زنجان، زنجان، ایران
چکیده
سیستم لوله­ ای یکی از سیستم­های باربر جانبی در سازه ­های بلند می­باشد که ستون­ها در فواصل نزدیک به هم از طریق اتصالات خمشی تیرهای عمیق به یکدیگر در پیرامون ساختمان متصل می­شوند. ولی با توجه به حداقل محدودیت­ های آئین­ نامه­ ای در مورد نسبت طول دهانه آزاد به ارتفاع کلی تیر، امکان استفاده از این سیستم وجود ندارد. لذا ایده استفاده از قاب­ های برشی فولادی همراه با تیرهای غیرمنشوری به عنوان یک جایگزین پیشنهاد شده است. در قاب­ های برشی با توجه به چیدمان سخت­ کننده ­های عرضی تیر پیوند (فیوز برشی)، ظرفیت باربری جانبی می­ تواند از طریق مقاومت کمانشی، مقاومت پس ­کمانشی ناشی از عمل میدان کششی و یا ظرفیت باربری ناشی از تسلیم ورق جان تأمین گردد. لذا تأثیر چیدمان سخت‌کننده بر روی متغیرهای عملکرد لرزه ­ای قاب­ های برشی شامل ضریب رفتار، ضریب اضافه مقاومت و ظرفیت دوران با نسبت­ های طولی مختلف تیر پیوند که رفتار همگی کنترل شونده توسط برش می‌باشند با استفاده از تحلیل‌های اجزاء محدود بررسی شده است. در انتها نیز متغیرهای ضریب رفتار و ضریب اضافه مقاومت در قاب­های 3، 5، 7، 10، 15 و 20 طبقه براساس فاصله سخت‌کنننده بهینه برای یک نسبت طولی مشخص ارائه و به منظور سهولت در مدل­سازی قاب­های چند طبقه در نرم­افزارSAP2000، پارامترهای مدل‌سازی و معیارهای پذیرش معرفی و با نتایج اجزاء محدود مقایسه شده است. همچنین در انتها یک سازه 25 طبقه با دو سیستم باربر جانبی مختلف شامل قاب خمشی لوله ­ای و قاب برشی با یکدیگر مقایسه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Assessment of transverse stiffeners in the link beam on seismic performance of steel shear frames: the effects of response modification factor, overstrength and rotation capacity

نویسندگان English

Payam Ashtari 1
Mohammad Rahnemoun 2
1 Associate professor of civil engineering department of Zanjan university, Zanjan, Iran
2 P.h D candidate of civil engineering department of Zanjan university, Zanjan, Iran.
چکیده English

Structures designed to resist moderate and frequently occurring earthquakes must have sufficient stiffness and strength to control deflection and prevent any collapse. Since stiffness and ductility are generally two opposing properties; it is desirable to devise a structural system that combines these properties in the most effective manner without an excessive increase in the cost. Steel structural systems including moment resisting and concentrically braced frames have been widely used to resist earthquake loads. Concentrically Braced Frames (CBFs) have high stiffness, and due to the probable buckling of their diagonal members, are not ductile enough. Versus, Moment-Resisting Frames (MRFs) have adequate ductility as their beam sections can undergo inelastic deformations. However, due to the low stiffness of moment frames, the construction costs will be increased. In recent decades, steel shear panels are utilized as one of the lateral resistant systems, in Steel Plate Shear Walls (SPSWs), and the link beam of steel frames with eccentric bracing to achieve the aim of shear performance and keep the adjacent members in the elastic range. The Tubular frame is one of the common lateral resistant systems in which the columns are placed in close spaces and connected through deep MRF beams around the building perimeters. Based on the new design codes, the minimum limit of span-to-depth ratio (7 for moderate moment-resisting frames and 5 for special moment-resisting frames) is not satisfied at tubular system. So the idea of Shear Resisting Frames (SRFs) with non-prismatic beams connected by a shear fuse in the middle of the span was proposed as one of the alternatives. Using SRFs remove these limitations and increase the energy dissipation capability. In this new concept, the shear force in the beam is considered as the displacement-controlled component of the system. Similar to eccentrically braced frames (EBFs), the link is tuned as a sacrificial component so that the seismic energy is dissipated by shear yielding in a small segment in the middle of the beam. According to the stiffeners layout, lateral loading capacity in SRFs usually is achieved through buckling strengths or post- buckling capacity resulted from tension field action or load carrying capacity from the yielding of the web plates. So stiffeners play a crucial role in the lateral loading capacity of shear resisting frames and have a significant effect on the energy dissipation capability. Following this issue, the effect of transverse stiffeners with different layouts and placements (various spaces and two or one-sided arrangement) on the seismic performance parameters (response modification factor, overstrength factor and rotation capacity of link beam) of steel shear frames with different link length ratios where all of them are controlled with shear behavior, are evaluated by finite element cyclic and pushover analysis. At the end, an optimum space is proposed for different link length ratios and the response modification factors and overstrength factor of multi-story shear resisting frames including 3, 5, 7, 9, 10, 15, and 20-story for a specific link length ratio are presented. Also for facilitating the modeling process of multi-story SRFs in SAP2000 software, modeling parameters and acceptance criteria were extracted from cyclic and monotonic curves. Finally, pushover curves from SAP2000 were compared to ABAQUS to validate these parameters. At the end, a 25-story building with two different lateral resisting systems including tubular frame and SRFs were compared.

کلیدواژه‌ها English

Steel Shear panels
steel Shear Resisting Frame (SRF)
transverse stiffener
seismic parameters
[1] Zahrai S.M. & Mahoorzadeh, Y. 2010 Experimental study of using vertical link beam to improve seismic performance of steel building. Civil engineering infrastructures journal (CEIJ), 44 (3), 379-393.
[2] Sabouri S. Lateral load resisting Systems. 2002 An Introduction to Steel Shear Walls. Anghizeh Publishing Ltd.
[3] Taranath B.S. 2005 Wind and earthquake resistant buildings: structural analysis and design. New York: Marcel Dekker.
[4] AISC341, 2016 Seismic provisions for structural steel buildings. American Institute of Steel Construction, Chicago, IL.
[5] Popov E.P. and Engelhardt M.D. 1988. Seismic eccentrically braced frames. J. Constr. Steel Res, 10, 321-354.
[6] Ji X., Wang Y., Ma Q. & Okazaki T. 2016 Cyclic behavior of very short steel shear links. Structural engineering, ASCE. 142 (2), 1943-541X.0001375
[7] Okazaki T., Engelhardt M.D., Nakashima M. & Suita, K. 2006 Experimental performance of link-to-column connections in eccentrically braced frames. Structural engineering, ASCE, 132 (8), 1201–1211.
[8] Tremblay R., Christopoulos C. & Mansur N. 2010 Experimental validation of replaceable shear links for eccentrically braced steel frames. Int. J. of. Struct. Eng. ASCE, 137 (10), pp.1141–1152, (2011).
[9] Richards, P.W. and Uang, C.M. “Effect of flange width-thickness ratio on eccentrically braced frames link cyclic rotation capacity. Structural engineering, ASCE, 131 (10), 1546–1552.
[10] Hjelmstad K.D. & Popov E.P. 1983 Seismic behavior of active beam link in eccentrically braced frames. Earthquake Engineering Research Center, University of California, Berkeley, CA, Report No. UCB/EERC-83/15, 1983.
[11] Engelhardt M.D. & Popov E.P. 1989 Behavior of long links in eccentrically braced frames. Earthquake Engineering Research Center, University of California, Berkeley, CA, Report No. UCB/EERC-89/01.
[12] Kasai K. & Popov E.P. 1986 A study of seismically resistant eccentrically braced frames. Earthquake Engineering Research Center, University of California, Berkeley, CA, Report No. UCB/EERC-86/01.
[13] Whittaker A.S., Uang C.M. & Bertero V.V. 1987 Earthquake simulation tests and associated studies of a 0.3-scale model of a six-story eccentrically braced steel structure. University of California, Berkeley, UCB/EERC-87/02.
[14] Arce, G. 2002 Impact of higher strength steels on local buckling and overstrength of links in eccentrically braced frames. Master’s thesis, Austin, Texas: Univ. Texas.
[15] AISC341, 2002 Seismic Provisions for Structural Steel Buildings. Chicago (IL), American Institute of Steel Construction, May 21.
[16] Itani A. & El-Fass, B.M.D. 1998 Cyclic behavior of shear links in retrofitted Richmond-San Rafael Bridge towers. Proceedings of the 1st world congress on structural engineering, San Francisco, United States, 155-3.
[17] Richards P.W & Uang C.M. 2005 Effect of flange width-thickness ratio on eccentrically braced frames link cyclic rotation capacity”. Structural engineering, ASCE, 131 (10), 1546–52.
[18] Barecchia E., Della Corte G. & Mazzolani F.M. 2004 Plastic overstrength of short and intermediate links. Proceedings of the 5th international conference on the behavior of steel structures in seismic areas, 177–83.
[19] Daneshmand, A. & Hosseini Hashemi B. 2012, Performance of intermediate and long links in eccentrically braced frames. Constructional Steel Resarch, 70, 167–76.
[20] ASCE/SEI 7. 2016 Minimum design loads for buildings and other structures. American society of civil engineers, Structural Engineering Institute.
[21] Kaufmann E.J., Metrovich B. & Pense A.W. 2001 Characterization of Cyclic Inelastic Strain Behavior on Properties of A572 Gr. 50 and A913 Gr. 50 Rolled Sections:, ATLSS Rep. No. 01–13, National Center for Engineering Research on Advanced Technology for Large Structural Systems, Lehigh University, Bethlehem, Pa.
[22] SIMULIA Abaqus, Abaqus theory manual (6.10). Tech rep, Dassault Systemes, Providence, RI, USA; 2010.
[23] Ashtari P., Barzegar Sedigh H. & Hamedi F. 2016 Experimental and Numerical Study on Innovative Seismic T-Resisting Frame (TRF). Structural Engineering and Mechanics, 60(2), 251-269.
[24] ATC-19. 1995 Structural Response Modifi cation Factors. Applied Technology Council: Redwood City, CA.
[25] Uang C.M. 1991 Establishing R (or Rw) and Cd factors for building Seismic Provisions. . Structural Engineering ASCE, 117(1), 19-28.
[26] American Society of Civil Engineers. 2017 Seismic Evaluation and Retrofit of Existing Buildings: ASCE Standard ASCE/SEI 41-17.