مقایسه‌ی روش‌های مختلف شناسایی سیستم برای استخراج پارامترهای مودال از ارتعاشات ثبت‌شده بر روی پل گیشا

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 آزمایشگاه آنالیز مودال، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران
2 آزمایشگاه سازه، دانشکده فنی، دانشگاه تهران، تهران، ایران
3 دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران
4 آزمایشگاه میز لزره و سانتریفویژ، دانشکده فنی، دانشگاه تهران، تهران، ایران
چکیده
کسب برخی اطلاعات از وضعیت پل ­ها بر مبنای پارامترهای مودال استخراج شده از داده­ های ارتعاشی با استفاده فرایند شناسایی سیستم، یکی از روش­ های متداول پایش سازه­ ای است. این در حالی است که حتی وجود عدم ­قطعیت‌هایی اندک در پارامترهای مودال بدست آمده، می­ تواند منجر به انحرافی بزرگ در فرایندهای مختلف پایش­ سازه­ ای از جمله به روزرسانی مدل عددی و تشخیص آسیب شود. در همین راستا در این مقاله تلاش شده ­است تا از یک سو تاثیر روش پردازش داده و از سوی دیگر اثر نوع داده ­برداری شامل ارتعاش آزاد و ارتعاش محیطی، بر روی پارامترهای مودال استخراج شده بررسی گردد. به همین منظور روش­ های شناسایی زیرفضای تصادفی، الگوریتم تحقق سیستم ویژه، تجزیه­ حوزه فرکانس و تجزیه مود تحلیلی برای استخراج پارامترهای مودال به کار گرفته شدند. داده­ های ارتعاشی نیز در شش نقطه بر روی یکی از شاه­ تیرهای پل گیشا تنها با استفاده از سه سنسور لرزه ­سنج، از طریق جابجا نمودن آنها در سه چینش جداگانه اندازه ­گیری شدند. در نتیجه، استخراج شکل­ مودها مستلزم ترکیب داده ­های ثبت شده در چینش­ هایِ مختلفِ اندازه­ گیری بود. پردازش داده ­های ارتعاش محیطی، منجر به استخراج پارامترهایِ سه مود اولِ خمشی قائم شد که نتایج بدست آمده از روش­ های مختلف در مقایسه با یکدیگر از سازگاری نسبی برخوردار بودند. از داده ­های ارتعاش آزاد نیز پارامترهای دو مود خمشی اول قائم با استفاده از روش­ های مختلف بدست آمدند. هم­چنین، بررسی نتایج بدست آمده نشان داد که با توجه به ناپایا بودن شرایط داده­برداری از پل گیشا، به کارگیری رویکرد ترکیب داده­ ها پس از فرایند شناسایی سیستم نسبت به رویکرد ترکیب داده ­ها پیش از فرایند شناسایی سیستم برای استخراج پارامترهای مودال مناسب­ تر بوده­ است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

A comparison of different system identification methods for modal parameter extraction using vibration responses measured from Gisha bridge

نویسندگان English

Amir Golestaneh 1
Amir Hossein Nazemi 2
Mohammad Sajad Shakeri 3
Mahdi Afshar 4
1 Modal Analysis Laboratory, Faculty of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
2 Structural Laboratory, Faculty of Engineering, University of Tehran, Tehran, Iran
3 Faculty of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
4 Shaking Table and Centrifuge Laboratory, Faculty of Engineering, University of Tehran, Tehran, Iran
چکیده English

In structural monitoring, modal parameters extracted from vibration data are commonly used to gain some information about the condition of bridges. However, even small amount of uncertainty in extracted modal parameters has a considerable erroneous impact on different processes of structural monitoring, including structural model updating and damage detection. Accordingly, in this research effects of different data processing methods and types of vibration tests such as ambient vibration and free vibration, on extracted modal parameters, have been studied. In this regard, four methods including Covariance based Stochastic Subspace Identification (Cov-SSI), Eigensystem Realization Algorithm (ERA), Frequency Domain Decomposition (FDD), and Analytical Mode Decomposition - Hilbert (AMD-Hilbert) have been used to estimate modal parameters. SSI and ERA are parametric methods in time domain in which mathematical bases are similar. FDD and AMD-Hilbert are non-parametric methods which work in frequency and time-frequency domain, respectively. SSI and FDD methods were used for ambient vibration test data and ERA was used for free vibration test records, while AMD-Hilbert method was applied for both free and ambient vibration data. In this article, vibration data of six points were measured from a girder of Gisha Bridge using three Molecular-electronic seismometer sensors, roved in three different setups. One sensor was chosen as reference and its position was fixed among different setups. Data of this sensor were later used for merging different setups results. Therefore, to extract modal parameters multi-setup merging approaches were inevitably used. The measurements were done in vertical direction which leads to identifying vertical bending modes. Ambient vibration responses were measured while the bridge was excited by wind and traffic under the bridge. Free vibration responses were measured after making an impact on the girder. Two approaches were considered for merging. In the first approach setups were analyzed separately and their final results were combined together and in the second one, merging was done before the process of system identification which eliminates any need to analyze multiple times. A numerical model was also simulated to compare with the field results. Filtering of the recorded data was done before beginning of the system identification process to remove the drift and sudden changes in the signals. Data processing on ambient vibration responses resulted in the first three vertical bending modes which are compatible among all methods, to some extent. In addition, the first two vertical bending modes were identified from free vibration data. Similarity of the mode shapes between different methods were assessed using MAC criterion. Compatible results between these two types of test and numerical model, verifies the results. It is seen that FDD and SSI methods obtained more stable and reliable modal parameters among different setups. Results indicate more modes were identified for ambient vibration data compared to free vibration data. Since, in free response of the structure the first modes are more dominant, lower number of modes could be identified. Considering the non-stationary condition of the conducted vibration tests, the results indicate that the post-processing multi-setup merging approach works better than the pre-processing multi-setup merging approach.

کلیدواژه‌ها English

Structural monitoring
system identification
Signal processing
Modal Parameters
Gisha bridge
[1] Van Overschee P, De Moor BL. Subspace identification for linear systems: Theory—Implementation—Applications. Springer Science & Business Media; 2012 Dec 6.
[2] Peeters B, De Roeck G. Reference-based stochastic subspace identification for output-only modal analysis. Mechanical systems and signal processing. 1999 Nov 1;13(6):855-78.
[3] Reynders E, Maes K, Lombaert G, De Roeck G. Uncertainty quantification in operational modal analysis with stochastic subspace identification: validation and applications. Mechanical Systems and Signal Processing. 2016 Jan 1; 66:13-30.
[4] Juang JN, Pappa RS. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of guidance, control, and dynamics. 1985 Sep;8(5):620-7.
[5] Caicedo JM. Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration. Experimental Techniques. 2011 Jul 1;35(4):52-8.
[6] Yang XM, Yi TH, Qu CX, Li HN, Liu H. Automated eigensystem realization algorithm for operational modal identification of bridge structures. Journal of Aerospace Engineering. 2019 Mar 1;32(2):04018148.
[7] Brincker R, Zhang L, Andersen P. Modal identification from ambient responses using frequency domain decomposition. InProc. of the 18*‘International Modal Analysis Conference (IMAC), San Antonio, Texas 2000 Feb.
[8] Brincker R, Zhang L, Andersen P. Modal identification of output-only systems using frequency domain decomposition. Smart materials and structures. 2001 Jun;10(3):441.
[9] Gade S, Møller NB, Herlufsen H, Konstantin-Hansen H. Frequency domain techniques for operational modal analysis. In1st IOMAC Conference 2005 Apr 26.
[10] Chen G, Wang Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components. Mechanical systems and signal processing. 2012 Apr 1;28:258-79.
[11] Wang ZC, Chen GD. Analytical mode decomposition of time series with decaying amplitudes and overlapping instantaneous frequencies. Smart materials and structures. 2013 Jul 25;22(9):095003.
[12] Wang Z, Chen G. Analytical mode decomposition with Hilbert transform for modal parameter identification of buildings under ambient vibration. Engineering Structures. 2014 Feb 1;59:173-84.
[13] Wen Q, Hua XG, Chen ZQ, Niu HW, Wang XY. AMD-based random decrement technique for modal identification of structures with close modes. Journal of Aerospace Engineering. 2018 Sep 1;31(5):04018057.
[14] Mevel L, Basseville M, Benveniste A, Goursat M. Merging sensor data from multiple measurement set-ups for non-stationary subspace-based modal analysis. Journal of Sound and Vibration. 2002 Jan 24;249(4):719-41.
[15] Regni M, Arezzo D, Carbonari S, Gara F, Zonta D. Effect of environmental conditions on the modal response of a 10-story reinforced concrete tower. Shock and Vibration. 2018;2018.
[16] Döhler M, Reynders E, Magalhaes F, Mevel L, De Roeck G, Cunha A. Pre-and post-identification merging for multi-setup OMA with covariance-driven SSI. InDynamics of Bridges, Volume 5 2011 (pp. 57-70). Springer, New York, NY.
[17] http://isenseco.com/capability/system-identification/
[18] Sun M, Makki Alamdari M, Kalhori H. Automated operational modal analysis of a cable-stayed bridge. Journal of Bridge Engineering. 2017 Dec 1;22(12):05017012.
[19] Bedrosian E. A product theorem for Hilbert transforms.
[20] Au S. Operational Modal Analysis. Singapore: Springer Nature; 2017.
[21]. Skolnik D, Lei Y, Yu E, Wallace JW. Identification, model updating, and response prediction of an instrumented 15-story steel-frame building. Earthquake Spectra. 2006 Aug;22(3):781-802.
[22]. Qin S, Kang J, Wang Q. Operational modal analysis based on subspace algorithm with an improved stabilization diagram method. Shock and Vibration. 2016 Jan 1;2016.
[23] Nguyen T, Chan TH, Thambiratnam DP. Effects of wireless sensor network uncertainties on output-only modal analysis employing merged data of multiple tests. Advances in Structural Engineering. 2014 Mar;17(3):319-29.