بررسی رسانایی هیدرولیکی و گرفتگی بتن های نفوذپذیر سبک حاوی لیکا و اسکوریا

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار، گروه مهندسی عمران دانشگاه فنی و حرفه ای، تهران، ایران
2 گروه عمران دانشگاه آزاد اسلامی واحد لشت نشاء
چکیده
بتن نفوذپذیر به بتنی گفته می شود که با توجه به تخلخل بالا امکان عبور آب با سرعت بالا را از درون خود امکان پذیر می سازد. رویه های آسفالتی و بتنی جاده ها هرچند قابلیت های سازه ای و دوام بالایی دارند ولی از نظر زیست محیطی و همچنین الودگی صوتی آسیب های زیادی را به محیط زیست انسان ها وارد می کنند. یکی از این مشکلات، عدم نفوذ آب حاصل از بارندگی به زمین می باشد، علاوه بر این جاری شدن آب باران موجب به وجود آمدن سیلاب در شهرها می شود که ممکن است خسارات مالی و جانی فراوانی را به همراه بیاورد.از سوی دیگر، آلودگی رواناب های سطحی به رس می تواند باعث ایجاد گرفتگی در تخلخل های موثر بتن نفوذپذیر شود که در نتیجه مهم ترین خصیصه این بتن را که نفوذپذیری بالا است، دچار مشکل می کند. در این تحقیق با بهره گیری از پوزولان دوده سیلیسی سعی شد تا علاوه بر نفوذپذیری بالا و گرفتگی کمتر، ویژگی های مکانیکی بهتری بدست اید. علاوه بر این با بهره گیری از سبکدانه های لیکا و اسکوریا وزن مخصوص بتن نفوذپذیر به طور محسوسی پایین آورده شد تا ضمن افزایش تخلخل داخلی و ساختاری به کاهش آلودگی های صوتی نیز کمک نماید. نتایج مشخص نمود که نمونه های حاوی لیکا عملکرد بهتری در آزمون های مکانیکی به دست می دهند. نمونه های حاوی سنگدانه اسکوریا تخلخل و نفوذپذیری در مقایسه با نمونه های حاوی لیکا دارند که هر دوی این خصوصیات از اهمیت بالایی در بتن نفوذپذیر برخوردار هستند. جایگزینی 10% از سیمان با دوده سیلیسی خصوصیات مکانیکی نمونه ها را بهبود بخشید. در تمام حالات، نمونه ها نفوذپذیری قابل قبولی را برای عبور سوسپانسیون های رسی حتی در غلظت های بالا (75 و 100 درصد) نشان دادند. اما اختلاف بین مخلوط 10% با آب فاقد رس چشمگیر بود در حالی که با افزایش غلظت، اختلاف رسانایی هیدرولیکی بسیار کمتر گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of hydraulic conductivity and clogging of light permeable concrete containing Leica and Scoria

نویسندگان English

KOMEIL MOMENI 1
Reza Ghavidel 2
1 Assistant Professor, Department of civil Engineering, Technical and Vocational TUV Tehran,Iran
2 Department of Civil Engineering, Islamic Azad University, Lasht Nasha Branch
چکیده English

Pervious concrete is a concrete that, given its high porosity, allows higher rates of water infiltration through it. Although asphalt and concrete pavements have high structural and durability capabilities, they have a considerable high impact on the environment in terms of environmental as well as acoustic noise production. One of these problems are the drastic decrease in rainwater penetration to the ground and the consequent flooding disasters in the cities, which can lead to significant financial and life damage. On the other hand, surface clay pollution runoff can lead to clogging and take negative impact at effective permeability of such concrete. Thus making the most important feature of this concrete, which is high permeability, would be accompanied by some difficulties. In this study, using silica fume, it’s been tried to make a permeable concrete in order to have desirable mechanical properties, high permeability and less clogging. In addition, with the use of leca and scoria lightweight aggregates, the specific gravity of pervious concrete was significantly reduced to help noise pollution reduction by increasing internal and structural porosity. The results showed that the samples containing leca has a better performance in mechanical tests. Specimens containing scoria aggregates have higher porosity and permeability, which both have high importance in pervious concrete. Replacing 10% of cement by silica fume improved the mechanical properties of the specimens. In all cases, the samples showed acceptable permeability for slurry passage even at high concentrations, but the difference between the 10% clay suspension compared to clay-free water was significant, while the hydraulic conductivity decrease rate was much lower with increasing the concentration of clay.

کلیدواژه‌ها English

Lightweight Concrete
Hydraulic Conductivity
Clogging
Porosity percentage
1. Y. Chen, Q. Zhang, Y. Gao, Experiment on mechanical performance of porouscement concrete applied to surface layer of highway pavement, China J.Highway Transport 23 (2) (2010) 18–24.
2. X. Li, Q. Yang, Impact analysis of porous concrete overlay timing on tunnelpavement, J. East China Jiaotong Univ. 30 (1) (2013) 41–45
3. C. Lian, Y. Zhuge, S. Beecham, The relationship between porosity and strengthfor porous concrete, Constr. Build. Mater. 25 (2011) 4294–4298
4. Y. Chen, K. Wang, X. Wang, W. Zhou, Strength, fracture and fatigue of perviousconcrete, Constr. Build. Mater. 42 (2013) 97–104
5. R. Zhong, K. Wille, Material design and characterization of high performance perviousconcrete, Construction and Building Materials, 98, 2015, 51-60
6. O. Deo, N. Neithalath, Compressive response of pervious concretes proportioned for desired porosities, Construction and Building Materials, 25, 2011, 4181-4189
7. Y. Z. A. Wongsa, V. Sata, P. Chindaprasirt, Use of lightweight aggregates in pervious concrete, Construction and Building Materials, 48, 2013, 585-591
8. E. Khankhaje, M. R. Salim, J. Mirza, M. W. Hussin, M. Rafiezonooz, Properties of sustainable lightweight pervious concrete containing oilpalm kernel shell as coarse aggregate, Construction and Building Materials, 126, 2016, 1054-1065
9. K. Cosic, L. Korat, V. Ducman, I. Netinger, Influence of aggregate type and size on properties of pervious concrete, Construction and Building Materials, 78, 2015, 69-76
10. E. Guneyisi, M. Gesoglu, Q. Kareem, S. Ipek, Effect of different substitution of natural aggregateby recycled aggregate on performance characteristicsof pervious concrete, Materials and Structures, 2014
11. M. A. Rafique Bhutta, K. Tsuruta, J. Mirza, Evaluation of high-performance porous concrete properties, Construction and Building Materials, 31, 2012, 67-73
12. A. Bonicelli, F. Giustozzi, M. Crispino, Experimental study on the effects of fine sand addition on differentiallycompacted pervious concrete, Construction and Building Materials, 91, 2015, 102-110
13. O. Deo, N. Neithalath, Compressive behavior of pervious concretes and aquantification of the influence of random pore structure features, Mater. Sci.Eng., A 528 (2010) 402–412
14. B. Rehder, K. Banh, N. Neithalath, Fracture behavior of pervious concretes: theeffects of pore structure and fibers, Eng. Fract. Mech. 118 (2014) 1–16
15. R. Zhong, M. Xu, R.V. Netto, K. Wille, Influence of pore tortuosity on hydraulicconductivity of pervious concrete: characterization and modeling, Constr.Build. Mater. 125 (2016) 1158–1168
16. S. Hesami, S. Ahmadi, M. Nematzadeh, Effects of rice husk ash and fiber on mechanical properties of perviousconcrete pavement, Construction and Building Materials, 53, 2014, 680-691
17. R. Zhong, K. Wille, Influence of matrix and pore system characteristics on the durabilityof pervious concrete, Construction and Building Materials, 162, 2018, 132-141
18. R. Bernhard, R. Wayson, An introduction to tire-pavement noise. FinalResearch Report SQDH 2005-1. Purdue University, West Lafayette, IN, USA,2005.
19. A. Marolf, N. Neithalath, E. Sell, K. Wegner, J. Weiss, J. Olek, Influence ofaggregate size and gradation on the acoustic absorption of enhanced porosityconcrete, ACI Mater. J. 101 (1) (2004) 82–91
20. M.D. Ohiduzzaman, O. Sirin, E. Kassem, J.L. Rochat, State-of-of-the-art review onsustainable design and construction of quieter pavements – part 1: traffic noisemeasurement and abatement techniques, Sustainability 8 (8) (2016) 742–769
21. N. Neithalath, J. Weiss, J. Olek, Characterizing enhanced porosity concreteusing electrical impedance to predict acoustic and hydraulic performance,Cem. Concr. Res. 36 (11) (2006) 2074–2085
22. B. Gerharz, Pavements on the base of polymer-modified drainage concrete,Colloids Surface A 152 (1999) 205–209
23. Pratt, C.J., Mantle, J.D., Schofield, P.A., 1995. UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality. Water Sci. Technol. 32 (1), 63e69
24. Welker, A.L., Gilbert Jenkins, J.K., McCarthy, L., Nemirovsky, E., 2013. Examination of the material found in the pore spaces of two permeable pavements. J. Irrig. Drain. Eng. 139, 278e284
25. Kayhanian, M., Anderson, D., Harvey, J.T., Jones, D., Muhunthan, B., 2012. Permeability measurement and scan imaging to assess clogging of pervious concrete pavements in parking lots. J. Environ. Manage 95 (1), 114e123.
26. Deo, O., Neithalath, N., 2011. Compressive response of pervious concretes proportioned for desired porosities. Constr. Build. Mater. 25 (11), 4181e4189
27. Coughlin, J.P., Campbell, C.D., Mays, D.C., 2012. Infiltration and clogging by sand and clay in a previous concrete pavement system. J. Hydro. Eng. 17 (1), 68e73. CRMA, 2009. Specifier's Guide for Pervious Concrete Pavement Design. Colorado Ready Mix Concrete Association, 24 pp.
28. Kevern, J.T., 2015. Evaluating permeability and infiltration requirements for pervious concrete. J. Test. Eval. 43 (3), 544e553
29. Yong, C.F., McCarthy, D.T., Deletic, A., 2013. Predicting physical clogging of porous and permeable pavements. J. Hydrol. 481, 48e55.
30. Chopra, M., Wanielista, M., Ballock, C., Spence, J., 2007. Construction and Maintenance Assessment of Pervious Concrete Pavements. Stormwater Management Academy University of Central Florida
31. Mackey, R.E., Koerner, G.R., 1999. Biological clogging of geotextile filters - a five-year study. In: Geosynthetics 99 Conference Proceedings, 28-30 April 1999. IFAI Publishing, Boston, Massachusetts. St. Paul, Minnesota, pp. 783e798
32. Guthrie, W.S., Carson, B.D., Dennis, L.E., 2010. Effects of soil clogging and watersaturation on freeze-thaw durability of pervious concrete. J. Transp. Res. Board2164, 89e97.
33. ASTM C778, Standard Specification for Standard Sand, ASTM International, West Conshohocken, Pennsylvania, USA
34. ASTM C496, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, Pennsylvania, USA
35. ASTM C642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, Pennsylvania, USA