شبیه‌سازی ضریب دبی سرریزهای کنگره‌ای توسط مدل‌های نوین هوش مصنوعی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری عمران، گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک
2 استادیار گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک.
3 دانشیار گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه
چکیده
در این مقاله، برای اولین بار با استفاده از روش هوش مصنوعی نوین تحت عنوان ORELM ضریب دبی سرریزهای کنگره‌ای تخمین زده شدند. در ابتدا، تعداد نرون‌های لایه مخفی بهینه مساوی با 15 انتخاب شد. سپس نتایج توابع فعال‌سازی مختلف مورد ارزیابی قرار گرفت که دقت‌ترین تابع فعال‌سازی برای مدل عددی شناسایی گردید. در ادامه، با استفاده از پارامترهای ورودی موثر بر روی ضریب دبی سرریزهای کنگره‌ای، هفت مدل ORELM مختلف توسعه داده شدند و با انجام تحلیل حساسیت، مدل برتر و موثرترین پارامترهای ورودی شناسایی شدند. به‌عنوان مثال، مقادیر شاخص‌های آماری R2، RMSRE و NSC برای مدل برتر به‌ترتیب مساوی با 943/0، 224/5 و 940/0 محاسبه شدند. همچنین، پارامترهای ورودی نسبت هد روی سرریز به ارتفاع سرریز (HT/P) و نسبت عرض یک کنگره به ارتفاع سرریز (w/P) به‌عنوان مهمترین پارامترهای ورودی شناسایی شدند. سپس برای مدل‌های عددی یک تحلیل عدم قطعیت اجرا و نشان داده شد که مدل ORELM دارای عملکردی بیشتر از واقعی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Simulation of labyrinth weir discharge coefficient by modern artificial intelligence models

نویسندگان English

Shahabodin Shafiei 1
Mohsen Najarchi 2
Saeid Shabanlou 3
1 Ph.D. Candidate, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
3 Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
چکیده English

Generally, labyrinth weirs pass more water compared to their equivalent rectangular weirs. Thus, these types of weirs are popular amongst hydraulic and environmental engineers. In this paper, for the first time, a novel artificial intelligence (AI) technique called "outlier robust extreme learning machine (ORELM)" is used to estimate the discharge coefficient of labyrinth weirs. The ORELM method has been proposed in order to overcome the difficulties of the classical ELM in predicting datasets with outliers. In this method, the concept of “sparsity characteristic of outliers” is used. Also, in this study, to verify the results of the numerical models the experimental measurements conducted by Kumar et al. (2011) and Seamons (2014) are employed. The experimental model established by Kumar et al. (2011) is composed of a rectangular channel with a length of 12m, a width of 0.28m and a depth of 0.41m. The weir is made of steel sheets and placed at an 11m distance from rectangular channel inlet. Also, Seamons (2014) experimental model has been set up in a rectangular channel with the length, width and height of 14.6m, 1.2m and 0.9m, respectively. First, the number of the hidden layer neurons initials from 5 and continues to 45 and the most optimal number the hidden layer neurons are taken into account equal to 5. In this study, the Monte Carlo simulations are used for examining the abilities of the numerical models. The main idea of this method is based on solving problems which might be actual in nature using random decision-making. The Monte-Carlo methods are usually implemented for simulating physical and mathematical systems which are not solvable by means of other methods. In this paper, the K-fold cross validation method is employed for validating the results of the numerical models. To this end, the observational data are divided into five equal sets and each time one set of these data is used for testing the numerical model and the rest for training it. This procedure is repeated five times and each test is used exactly once to train and once to test. This method increases the flexibility of the numerical model when dealing with the observational data, and it can be said that the numerical model has the ability to model a greater range of laboratory data. For instance, the maxim value of R2 is obtained for the K=4 case (R2=0.954), while for the K=5 case the values of RMSE and MARE are estimated 0.034 and 4.408, respectively. After that, different activation functions are evaluated in order to detect the most accurate one for the numerical model. Subsequently, six different ORELM models are developed using the parameters affecting the discharge coefficient of labyrinth weirs. Also, the superior model and the most effective input parameters are identified through a sensitivity analysis. For example, the values of R2, RMSRE and NSC for the superior model are calculated 0.943, 5.224 and 0.940, respectively. Furthermore, the ratio of the head above the weir to the weir height (HT/P) and the ratio of the width of a single cycle to the weir height (w/P) are introduced as the most important input parameters. Also, the results of the ORELM superior model are compared with the artificial intelligence models including the extreme learning machine, artificial neural network and the support vector machine and it is concluded that ORELM has a better performance. Then, an uncertainty analysis is conducted for the ORELM, ELM, ANN and SVM models and it is proved that ORELM has an overestimated performance.


کلیدواژه‌ها English

Labyrinth weir
Discharge coefficient
Machine learning
Uncertainty Analysis
1- Zaji A.H. and Bonakdari H. 2014. Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs. Flow Measurement and Instrumentation, 40, 149-156.
2- Ebtehaj I., Bonakdari H., Zaji A.H., Azimi H. & Sharifi A. 2015. Gene expression programming to predict the discharge coefficient in rectangular side weirs. Applied Soft Computing, 35, 618-628.
3- Khoshbin F., Bonakdari H., Ashraf Talesh S.H., Ebtehaj I., Zaji A.H. & Azimi H. 2016. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Engineering Optimization, 48(6), 933-948.
4- Roushangar K., Khoshkanar R. & Shiri J. 2016. Predicting trapezoidal and rectangular side weirs discharge coefficient using machine learning methods”, ISH Journal of Hydraulic Engineering, 22(3), 254-261.
5- Azimi H., Shabanlou S., Ebtehaj I., Bonakdari H. & Kardar S. 2017a. Combination of computational fluid dynamics, adaptive neuro-fuzzy inference system, and genetic algorithm for predicting discharge coefficient of rectangular side orifices. Journal of Irrigation and Drainage Engineering, 143(7), 04017015.
6- Azimi H., Bonakdari H. & Ebtehaj, I. 2017b. Sensitivity analysis of the factors affecting the discharge capacity of side weirs in trapezoidal channels using extreme learning machines. Flow Measurement and Instrumentation, 54, 216-223.
7- Haghiabi A.H., Parsaie A. & Ememgholizadeh S. 2017. Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System. Alexandria Engineering Journal.
8- Roushangar K., Alami M.T., Majedi Asl M. & Shiri J. 2017. Modeling discharge coefficient of normal and inverted orientation labyrinth weirs using machine learning techniques. ISH Journal of Hydraulic Engineering, 23(3), 331-340.
9- Roushangar K., Alami M.T., Shiri J. & Asl, M.M. 2018. Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine. Hydrology Research, 49(3), 924-938.
10- Salazar F. & Crookston, B.M. 2019. A Performance Comparison of Machine Learning Algorithms for Arced Labyrinth Spillways. Water, 11(3), 544.
11- Bilhan O., Emiroglu M.E., Miller C.J. & Ulas M. 2019. The evaluation of the effect of nappe breakers on the discharge capacity of trapezoidal labyrinth weirs by ELM and SVR approaches. Flow Measurement and Instrumentation, 64, 71-82.
12- Huang G.B., Zhu Q.Y. & Siew, C.K. 2006. Extreme learning machine: theory and applications. Neurocomputing, 70(1), 489-501.
13- Zhang K. & Luo M. 2015. Outlier-robust extreme learning machine for regression problems. Neurocomputing, 151, 1519-1527.
14- Kumar S., Ahmad Z. & Mansoor T. 2011. A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs. Journal of Flow Measurement and Instrumentation, 22(3), 175-180.
15- Seamons T.R. 2014. Labyrinth weirs: a look into geometric variation and its effect on efficiency and design method predictions. Master of Science thesis. Utah State University. USA.