1. Yang, J., & Kim, S. H. 2014 Factorial effects of mix design variables on the coefficient of thermal expansion of concrete mixtures. Road Materials and Pavement Design, 15(4), 942-952.
2. AASHTO, 2000. Standard method of test for coefficient of thermal expansion of hydraulic cement concrete..
3. TI-B 101 (94) Test Method Expansion Coefficient of Concrete.” Danish Technological Institute, M.
4. Lukefahr, E., & Du, L. 2010. Coefficients of Thermal Expansion of Concrete with Different Coarse Aggregates–Texas Data. Journal of Testing and Evaluation, 38(6), 683-690.
5. Won, M. 2005. Improvements of testing procedures for concrete coefficient of thermal expansion. Transportation Research Record: Journal of the Transportation Research Board, (1919), 23-28.
6. Bažant, Z. P. 1970. Delayed thermal dilatations of cement paste and concrete due to mass transport. Nuclear Engineering and Design, 14(2), 308-318.
7. Xuan, D. X., Shui, Z. H., & Cao, B. B. 2007. Investigation on Thermal Deformation Divergence Between Components of Cement-basted Materials [J]. Journal of Wuhan University of Technology, 1.
8. Sellevold, E. J., & Bjøntegaard, Ø. 2006. Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction. Materials and Structures, 39(9), 809-815.
9. Darwin, D., Mindess, S., & Young, J. F. 2003. Concrete.
10. Cwirzen, A., & Penttala, V. 2005. Aggregate–cement paste transition zone properties affecting the salt–frost damage of high-performance concretes. Cement and Concrete Research, 35(4), 671-679.
11. Frı́as, M., & Cabrera, J. 2000. Pore size distribution and degree of hydration of metakaolin–cement pastes. Cement and Concrete Research, 30(4), 561-569.
12. Khatib, J. M., & Wild, S. 1996. Pore size distribution of metakaolin paste. Cement and Concrete Research, 26(10), 1545-1553.
13. Li, Y. X., Chen, Y. M., Wei, J. X., He, X. Y., Zhang, H. T., & Zhang, W. S. 2006. A study on the relationship between porosity of the cement paste with mineral additives and compressive strength of mortar based on this paste. Cement and Concrete Research, 36(9), 1740-1743.
14. Manmohan, D., & Mehta, P. K. 1981. Influence of pozzolanic, slag, and chemical admixtures on pore size distribution and permeability of hardened cement pastes. Cement, Concrete and Aggregates, 3(1), 63-67.
15. Pandey, S. P., & Sharma, R. L. 2000. The influence of mineral additives on the strength and porosity of OPC mortar. Cement and Concrete Research, 30(1), 19-23.
16. Poon, C. S., Lam, L., Kou, S. C., Wong, Y. L., & Wong, R. 2001. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cement and Concrete Research, 31(9), 1301-1306.
17. Shui, Z. H., Zhang, R., Chen, W., & Xuan, D. X. 2010. Effects of mineral admixtures on the thermal expansion properties of hardened cement paste. Construction and Building Materials, 24(9), 1761-1767.
18. Gao, G. B., Qian, C. X., & Wang, Y. W. 2012. Effect of Fly Ash and Slag Powder on Coefficient of Thermal Expansion of Concrete. Advanced Materials Research (Vol. 374, pp. 1230-1234). Trans Tech Publications.
19. Alungbe, G. D., Tia, M. A. N. G., & Bloomquist, D. G. 1992. Effect of aggregate, water-cement ratio, and curing on the coefficient of linear thermal expansion of concrete. Journal of the Transportation Research Record, 1335, 44-51.
20. Bredy, P., Chabannet, M., & Pera, J. 1988. Microstructure and porosity of metakaolin blended cements. MRS Online Proceedings Library Archive, 136.
21. Duan, P., Shui, Z., Chen, W., & Shen, C. 2013. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Construction and Building Materials, 44, 1-6.
22. Gonen, T., & Yazicioglu, S. 2007. The influence of mineral admixtures on the short and long-term performance of concrete. Building and Environment, 42(8), 3080-3085.
23. Igarashi, S. I., Kawamura, M., & Watanabe, A. 2004. Analysis of cement pastes and mortars by a combination of backscatter-based SEM image analysis and calculations based on the Powers model. Cement and Concrete Composites, 26(8), 977-985.
24. Poon, C. S., Kou, S. C., & Lam, L. 2006. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construction and building materials, 20(10), 858-865.
25. ASTM. 2009. Standard test method for density of hydraulic cement.
26. Astm, C. 2006. 642, Standard test method for density, absorption, and voids in hardened concrete. Annual book of ASTM standards, 4, 02.
27. Bamforth, P., et al., Properties of Concrete for use in Eurocode 2. 2008.