فرمول‌بندی و کاربرد المان‌های هنکل کروی در مدلسازی عددی مسائل پتانسیل به کمک روش المان مرزی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار، بخش مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران
2 دانشیار، بخش مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران
چکیده
در این مقاله، یک آنالیز المان مرزی جدیدی برای مدلسازی مسائل دو بعدی پتانسیل پیشنهاد شده است. روش المان مرزی بر مبنای المان‌های هنکل کروی به منظور تقریب متغیرهای حالت معادلات دیفرانسیل پواسون و لاپلاس (پتانسیل‌ها و شارها)، بازفرمول‌بندی شده است. با استفاده از غنی‌سازی توابع پایه‌ی شعاعی هنکل کروی، توابع انترپولاسیون روش المان مرزی حاصل شده‌اند. بدین منظور، به بسط تابعی‌ای که در آن فقط از تقریب توابع پایه‌ی شعاعی هنکل کروی استفاده می‌شود، ترم‌های چندجمله‌ای الحاق می‌شود. از جمله خواص منحصر بفرد انترپولاسیون پیشنهادی می­توان به مشارکت میدان توابع نوع اول و دوم بسل در فضای مختلط علاوه بر اغنای میدان توابع چندجمله‌ای، بر خلاف توابع کلاسیک لاگرانژ که فقط توابع چندجمله­ای را اغنا می­کنند، اشاره کرد. بعلاوه توابع شکل پیشنهادی از خاصیت قطعه قطعه پیوسته از مرتبه بینهایت سود میبرند که این امر برای توابع شکل کلاسیک لاگرانژ که دارای مرتبه پیوستگی محدودی هستند، وجود ندارد. تابع هنکل کروی نوع اول دارای سینگولاریتی قوی در قسمت موهومی خود، تابع نیومن کروی، می‌باشد که این مطلب عدم وجود حد برای میل نرم اقلیدس به سمت صفر را در بر دارد. در ادامه برای رفع سینگولاریتی از ترم اضافی با توان استفاده شده است. پس از رفع سینگولاریتی، حالت حدیِ انطباق نقطهی چشمه و گرهی مرزی محاسبه شده است. برای نشان دادن کارایی و دقت روش حاضر، چند مثال عددی در نظر گرفته شده است و نتایج حاصل با نتایج حل تحلیلی و نتایج توابع شکل کلاسیک لاگرانژ مقایسه شده است. نتایج این مقایسه ‌ها حاکی از دقت بسیار بالاتر روش پیشنهادی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Formulation and Application of Spherical Hankel Elements in Numerical Modelling of Potential Problems using Boundary Element Method

نویسندگان English

Saleh Hamzehei-Javaran 1
Saeed Shojaee 2
1 Assistant Professor, Civil Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
2 Associate Professor, Civil Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده English

In this paper, a new boundary element analysis for the modeling of two-dimensional potential problems is proposed. The boundary element method is reformulated here based on spherical Hankel elements for the purpose of approximation of the state variables of the Poisson and Laplace differential equations (potentials and fluxes). Spherical Hankel function is obtained by combing Bessel function of the first (similar to J-Bessel ones) and second (also called Neumann functions) kind so that the properties of both mentioned functions will be combined and result in a robust interpolation tool. The interpolation functions of the boundary element method are obtained using the enrichment of the spherical Hankel radial basis functions. To this end, the expansion of a function in which only the spherical Hankel radial basis functions approximations are used have been given polynomial terms. Generally, radial basis function (RBF) is an efficient tool in finding the solution of non-homogeneous partial differential equations. Its main idea is the expansion of non-homogeneous term by its values in interpolation nodes, based on Euclidean norm that leads to obtaining a particular solution. Although the J-Bessel RBF contains the features of the first kind of Bessel function, it usually cannot represent the full properties of a physical phenomenon. Therefore, using the combination of the first and second kind of Bessel function in complex space (Hankel function) may lead to more accurate and robust results. In other words, the solution of Bessel equation can be referred as a prominent usage of both first and second kind of Bessel, which shows that using them together may result in more accuracy and robustness. The aforementioned discussion brings this matter to mind whether it is possible to present RBFs that benefit from both Bessel functions of the first and second kind. Therefore, by the idea of combining spherical Hankel in imaginary space, enrichment of them for a three-node element in the natural coordinate system is explained in this paper. Moreover, the algebraic manipulations and formulations are reduced because of profiting from the advantages of complex number space in functional space. It is also possible for the proposed shape function to satisfy both Bessel function fields and polynomial functions, unlike classic Lagrange shape functions that only satisfy the polynomial function fields. Moreover, the proposed shape functions benefit from the infinite piecewise continuous property, which does not exist in the classic Lagrange shape functions with limited continuity. The spherical Hankel function of the first kind has a strong singularity in its imaginary part, the spherical Neumann function. This issue results in the fact that when the Euclidean norm tends to zero, the limit does not exist. In the following, an extra term with power is applied to remove this singularity. After the elimination of the singularity, the limit state of coinciding source point and field point is calculated. In the end, to demonstrate the accuracy and efficiency of the proposed shape functions, several numerical examples are solved and compared with the analytical results as well as those obtained by classic Lagrange shape functions. The numerical results show that the proposed Hankel shape functions represent more accurate solutions, using fewer degrees of freedom, in comparison with classic Lagrange shape functions.

کلیدواژه‌ها English

Spherical Hankel elements
Boundary element method
2D potential problems
Poisson's and Laplace's equations
[1] Kreyszig E. 2006 Advanced engineering mathematics. John Wiley & Sons, Inc.
[2] Mirzajani M., Khaji N. 2017 Stress wave propagation modelling in one-dimensional micropolar rods using a new Wave Finite Element Method. Modares Mechanical Engineering, 17(5), 405-412 (In Persian).
[3] Nikpoo B., Khodakarami M.I. 2017 Quantitative solution of 2-D inverse elastodynamics problems using hybrid FDM-FEM and PSO. Modares Civil Engineering journal, 17(4), 263-275 (In Persian).
[4] Baniassadi M., Baghani M., Eskandari A.H. 2017 A finite element analysis for shape memory polymer Timoshenko beams. Modares Mechanical Engineering, 17(8), 351-359 (In Persian).
[5] Brebbia C.A., Telles J., Wrobel L. 1984 Boundary element techniques – Theory and Applications in Engineering. Berlin and New York: Springer Verlag.
[6] Friedrich J. 2002 A linear analytical boundary element method (BEM) for 2D homogeneous potential problems. Computers & Geosciences, 28, 679–692.
[7] Farcas A., Elliott L., Ingham D.B., Lesnic D. 2003 The dual reciprocity boundary element method for solving Cauchy problems associated to the Poisson equation. Engineering Analysis with Boundary Elements, 27, 955–962.
[8] Zhou H.L., Niu Z.R., Wang X.X. 2003 Regularization of nearly singular integrals in the BEM of potential problems. Applied Mathematics and Mechanics, 24, 1208–1214.
[9] Zhou H., Niu Z.h., Cheng C.h., Guan Z.h. 2007 Analytical integral algorithm in the BEM for orthotropic potential problems of thin bodies. Engineering Analysis with Boundary Elements, 31, 739–748.
[10] Gao X.W. 2010 Source point isolation boundary element method for solving general anisotropic potential and elastic problems with varying material properties. Engineering Analysis with Boundary Elements, 34, 1049–1057.
[11] Wolf J.P. 2004 The scaled boundary finite element method. John Wiley & Sons Ltd.
[12] Deeks A.J., Cheng L. 2003 Potential flow around obstacles using the scaled boundary finite-element method. International Journal for Numerical Methods in Fluids, 41, 721–741.
[13] Teng B., Zhao M., He G.H. 2006 Scaled boundary finite element analysis of the water sloshing in 2D containers. International Journal for Numerical Methods in Fluids, 52, 659–678.
[14] Zhang Z., Zhao P., Liew K.M. 2009 Improved element-free Galerkin method for two-dimensional potential problems. Engineering Analysis with Boundary Elements, 33, 547–554.
[15] Peng M., Cheng Y. 2009 A boundary element-free method (BEFM) for two-dimensional potential problems. Engineering Analysis with Boundary Elements, 33, 77–82.
[16] Mukherjee Y.X., Mukherjee S. 1997 The boundary node method for potential problems. International Journal for Numerical Methods in Engineering, 40, 797–815.
[17] Tan F., Wang Y.H. 2010 Multiple reciprocity hybrid boundary node method for potential problems. Engineering Analysis with Boundary Elements, 34, 369–376.
[18] Ma H., Qin Q.H. 2007 Solving potential problems by a boundary-type meshless method – the boundary point method based on BIE. Engineering Analysis with Boundary Elements, 31, 749–761.
[19] Chen T., Raju I.S. 2003 A coupled finite element and meshless local Petrov–Galerkin method for two-dimensional potential problems. Computer Methods in Applied Mechanics and Engineering, 192, 4533–4550.
[20] Khaji N., Khodakarami M.I. 2011 A new semi-analytical method with diagonal coefficient matrices for potential problems. Engineering Analysis with Boundary Elements, 35, 845–854.
[21] Shojaee S., Valizadeh N., Izadpanah E., Bui T., Vu T.V. 2012 Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method. Composite Structures, 94, 1677–1693.
[22] Jari H., Atri H.R., Shojaee S. (2015). Nonlinear thermal analysis of functionally graded material plates using a NURBS based isogeometric approach. Composite Structures, 119, 333-345.
[23] Shojaee S., Daneshmand A. 2015 Crack Analysis in Media with Orthotropic Functionally Graded Materials Using Extended Isogeometric Analysis. Engineering Fracture Mechanics, 147, 203–227.
[24] Nguyen B.H., Tran H.D., Anitescu C., Zhuang X., Rabczuk, T. 2016 An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 306, 252–275.
[25] Hamzehei-Javaran S., Shojaee S. 2017 The solution of elastostatic and dynamic problems using the boundary element method based on spherical Hankel element framework. International Journal for Numerical Methods in Engineering, 112(13) 2067-2086.
[26] Hamzehei-Javaran S., Shojaee S. 2018 Improvement of numerical modeling in the solution of static and transient dynamic problems using finite element method based on spherical Hankel shape functions. International Journal for Numerical Methods in Engineering, 115(10) 1241-1265.
[27] Farmani S., Ghaeini‐Hessaroeyeh M., Hamzehei-Javaran S. 2017 The improvement of numerical modeling in the solution of incompressible viscous flow problems using finite element method based on spherical Hankel shape functions. International Journal for Numerical Methods in Fluids, 87(2) 70-89.
[28] Bahrampour M., Hamzehei-Javaran S., Shojaee S. 2018 New Insight into Viscoelastic Finite Element Modeling of Time-Dependent Material Creep Problems Using Spherical Hankel Element Framework. International Journal of Applied Mechanics, 10(8), 1-23.
[29] Nardini D., Brebbia C.A. 1983 A new approach to free vibration analysis using boundary elements. Applied Mathematical Modelling, 7(3), 157–162.
[30] Brebbia C.A., Nardini D. 1983 Dynamic analysis in solid mechanics by an alternative boundary elements procedure. International Journal of Soil Dynamics and Earthquake Engineering, 2(4), 228–233.
[31] Nardini D., Brebbia C.A. 1985 Boundary integral formulation of mass matrices of dynamic analysis. In: Brebbia, C.A., editor, Topics in Boundary Element Research. Berlin: Springer.
[32] Golberg M.A., Chen C.S. 1994 The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations. Boundary Elements Communications, 5(2), 57–61.
[33] Agnantiaris J.P., Polyzos D., Beskos D.E. 1996 Some studies on dual reciprocity BEM for elastodynamic analysis. Computational Mechanics, 17, 270–277.
[34] Bridges T.R., Wrobel L.C. 1994 On the calculation of natural frequencies of microstructures using DRBEM. Proceedings of the Boundary Element Method (BEM) XVI Conference, 529–536.
[35] Golberg M.A. 1995 The numerical evaluation of particular solutions in the BEM–a review. Boundary Elements Communications, 6(3), 99–106.
[36] Chen C.S. 1995 The method of fundamental solution for non-linear thermal explosions. Communications in Numerical Methods in Engineering, 11, 675–681.
[37] Karur S.R., Ramachandran P.A. 1995 Augmented thin plate spline approximation in DRM. Boundary Elements Communications, 6(2), 55–58.
[38] Mehraeen S., Noorzad A. 2001 Application of radial basis functions on dual reciprocity BEM for dynamic analysis of pierced shear wall. International Series on Advances in Boundary Elements, 10, 299–308.
[39] Rashed Y.F. 2002 Transient dynamic boundary element analysis using Gaussian based mass matrix. Engineering Analysis with Boundary Elements, 26, 265–279.
[40] Rashed Y.F. 2008 Free Vibration of Structures with Trigonometric SIN(R) Function in the Dual Reciprocity Boundary Element Analysis. Advances in Structural Engineering, 11(4), 397–409.
[41] Agnantiaris J.P., Polyzos D., Beskos D.E. 2001 Free vibration analysis of non-axisymmetric and axisymmetric structures by the dual reciprocity BEM. Engineering Analysis with Boundary Elements, 25, 713–723.
[42] Samaan M.F., Rashed Y.F. 2007 BEM for transient 2D elastodynamics using multiquadric functions. International Journal of Solids and Structures, 44, 8517–8531.
[43] Samaan M.F., Rashed Y.F. 2009 Free vibration multiquadric boundary elements applied to plane elasticity. Applied Mathematical Modelling, 33, 2421–2432.
[44] Hamzehei Javaran S., Khaji N. 2015 Analysis of free and forced vibration problems using boundary element dual reciprocity method based on inverse multiquadric basis functions. Journal of numerical methods in engineering, 32(1), 51-64 (In Persian).
[45] Hamzeh Javaran S., Khaji N., Moharrami H. 2010 A dual reciprocity BEM approach using new Fourier radial basis functions applied to 2D elastodynamic transient analysis. Engineering Analysis with Boundary Elements, 35, 85–95.
[46] Hamzeh Javaran S., Khaji N., Noorzad A. 2011 First kind Bessel function (J-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method. Acta Mech, 218, 247–258.
[47] Fornberg B., Larsson E., Wright G. 2006 A new class of oscillatory radial basis functions. Computers and Mathematics with Applications, 51, 1209–1222.
[48] Hamzehei Javaran S., Khaji N. 2014 Dynamic analysis of plane elasticity with new complex Fourier radial basis functions in the dual reciprocity boundary element method. Applied Mathematical Modelling, 38, 3641–3651.
[49] Hamzehei-Javaran S., Khaji N. 2018 Complex Fourier element shape functions for analysis of 2D static and transient dynamic problems using dual reciprocity boundary element method. Engineering Analysis with Boundary Elements, 95, 222–237.
[50] Izadpanah E., Shojaee S., Hamzehei-Javaran S. 2018 Time discontinuous finite element analysis of two-dimensional elastodynamic problems using complex Fourier shape functions. Journal of Applied and Computational Mechanics, 4, 442-456.
[51] Wendland H. 1995 Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Advances in Computational Mathematics, 4, 389–396.
[52] Chen C.S., Brebbia C.A., Power H. 1999 Dual reciprocity method using compactly supported radial basis functions. Communications in Numerical Methods in Engineering, 15, 137–150.
[53] Golberg M.A., Chen C.S., Ganesh M. 2000 Particular solutions of 3D Helmholtz-type equations using compactly supported radial basis functions. Engineering Analysis with Boundary Elements, 24, 539–547.
[54] Rashed Y.F. 2002 BEM for dynamic analysis using compact supported radial basis functions. Computer and Structures, 80, 1351–1367.
[55] Samaan M.F., Rashed Y.F., Ahmed M.A. 2007 The dual reciprocity method applied to free vibrations of 2D structures using compact supported radial basis functions. Computational Mechanics, 41(1), 85–106.
[56] Katsikadelis J.T. 2002 Boundary Elements – Theory and Applications. Amsterdam: Elsevier Science Ltd.
[57] Wang J.G., Liu G.R. 2002 On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer Methods in Applied Mechanics and Engineering, 191, 2611–2630.