راهکاری جدید برای تحلیل ارتعاشی ترک در تیرهای بتن آرمه ی مقاوم سازی شده با ورق های کامپوزیتی

نویسندگان
1 استادیار گروه عمران دانشکده فنی دانشگاه گیلان
2 گروه عمران، دانشکده فنی مهندسی، دانشگاه گیلان، رشت، ایران
3 استادیار گروه مهندسی مکانیک، واحد بندر انزلی، دانشگاه آزاد اسلامی، بندرانزلی، ایران
چکیده
در این مقاله با استفاده از روابط حاکم بر مکانیک شکست و اجزای محدود، ترک‌خوردگی در مود اول (بازشدگی) برای تیرهای بتن‌آرمه‌ی مقاوم‌سازی شده با ورق‌های کامپوزیتی بر‌اساس ارائه‌ی روشی جدید، تحلیل و مدل‌سازی می‌شود. در این روش، برای شبیه‌سازی ترک، روابط تعیین ضرایب شدت تنش با حضور آرماتورها و ورق تقویتی توسعه داده می‌شوند. در روش پیشنهاد شده، اجزای تیر به دو دسته، شامل اجزای بدون ترک و دارای ترک تقسیم می‌شوند. در اجزای بدون ترک، از روابط، معادلات، ماتریس سختی و جرم متعارف حاکم بر تیر با در نظر گرفتن تغییرات ممان اینرسی ناشی از حضور آرماتورها و ورق‌های تقویتی استفاده می‌گردد. در جزء‌محدود دارای ترک، مشخصات ترک با استفاده از ایجاد یک نقص هندسی در مقطع تیر شبیه‌سازی می‌گردد. به‌طوری‌که کاهش سختی جزء دارای ترک به واسطه‌ی تغییر ابعاد ناپیوستگی معادل می‌گردد. در‌اینجا تغییرات سختی جزء ترک‌خورده به‌صورت تابعی از ضرایب شدت تنش اصلاح شده، محاسبه و ارائه می‌گردد. در روش حاضر، جزءمحدود دارای ترک، با تقسیم شدن به دو "ریز بخش" در دو طرف یک فنر پیچشی مدل‌سازی می‌گردد. که‌در‌آن با استفاده از اعمال معادلات پیوستگی در نقطه‌ی ترک، ماتریس‌های سختی و جرم دو ریز ‌بخش و سپس ماتریس سختی و جرم اصلاح‌شده‌ی جزءمحدود دارای ترک استخراج می‌گردد. در ادامه این روش برای یک تحلیل ارتعاشی توسعه داده می‌شود. اثرات مکان ترک، و اثر گسترش ترک بر روی رفتار استاتیکی و ارتعاشی تیر بتن‌آرمه بررسی می‌گردد. برای اطمینان از صحت و دقت روش ارائه شده تمام تحلیل‌های انجام شده، در نرم افزار آباکوس پیاده‌سازی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

A new approach for vibration analysis of crack in reinforced concrete beams with composite sheets

نویسندگان English

javad razzaghi 1
Morteza Khomami Abadi 2
Ali Alijani 3
1 Assistant Professor, Faculty of Engineering, University of Guilan
2 Civil group, Faculty of Engineering., University of Guilan, rasht, Iran
3 Assistant Professor, Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
چکیده English

In this paper, cracking in the first mode (opening) is modelled for reinforced concrete beams with FRP sheets based on presenting a new method by using the principles and relations of fracture mechanics and finite element method. In this method, for modelling the relationships of determining the stress intensity factor is developed for reinforcement sheet. In the proposed method, elements of the beam are divided into two categories, including elements with and without the crack. In the elements without the crack, the relationships, equation, stiffness and mass matrices of the beam are established with considering the changes in the moment of inertia due to the reinforced FRP sheet. In the elements with the crack, a change in the cross-section of the reinforced concrete due to the crack and a discontinuity in the crack point leads to an improvement in the standard governing relationships. So that the reduction of the stiffness of the cracked element is equivalent to the change in the size of the discontinuity. Here, the variation of the stiffness of the cracked element is calculated and presented as a function of the stress intensity factor. In this approach, the simulation of the crack is done by dividing the element to two sub-elements into the two sides of the rotational spring. In which, The stiffness and mass matrices of the two sub-elements and the improved stiffness and mass matrix of the element are derived by satisfying the continuity equation at the crack point. This method is developed from a vibrating analysis. The effects of crack depth and location and the effect of crack expansion on the static and vibrational behaviour of a concrete beam are investigated. To ensure the accuracy of the proposed method, all analysis performed in Abacus software is implemented. Comparing the results of the proposed model with the results of comprehensive modelling in Abacus software is applied to verify. The comparison of the results shows that the proposed methods are suitable for the analysis of reinforced concrete structures resistant to cracking. So that it can be generalised and optimally desirable for other models. In this paper, cracking in the first mode (opening) is modelled for reinforced concrete beams with FRP sheets based on presenting a new method by using the principles and relations of fracture mechanics and finite element method. In this method, for modelling the relationships of determining the stress intensity factor is developed for reinforcement sheet. In the proposed method, elements of the beam are divided into two categories, including elements with and without the crack. In the elements without the crack, the relationships, equation, stiffness and mass matrices of the beam are established with considering the changes in the moment of inertia due to the reinforced FRP sheet. In the elements with the crack, a change in the cross-section of the reinforced concrete due to the crack and a discontinuity in the crack point leads to an improvement in the standard governing relationships. So that the reduction of the stiffness of the cracked element is equivalent to the change in the size of the discontinuity. Here, the variation of the stiffness of the cracked element is calculated and presented as a function of the stress intensity factor. In this approach, the simulation of the crack is done by dividing the element to two sub-elements into the two sides of the rotational spring.

کلیدواژه‌ها English

Vibration Analysis of Crack
reinforced concrete beams
Composite Sheets
Sub-element
Rotational Spring
[1] Krishnamoorthy C. & Panneerselvam S. A. 1978 FEPACSl-a finite element program for nonlinear analysis of reinforced concrete framed structures. Journal of Computer and Structures, 9(5), 451–461.
[2] Zdenek P. B. & Byung H. 1984 Deformation of progressively cracking reinforced concrete beams. ACI Structural Journal, 71(3), 268–278.
[3] Hu H. & William C. 1990 Nonlinear analysis of cracked reinforced concrete. ACI Structural Journal, 87(2), 199–207.
[4] Chandra, R. & Choprat I. 1993 Analytical-experimental investigation of free-vibration characteristics of rotating composite I-beams. Journal of Aircraft, 30(6), 927–934.
[5] Massenzio M., Jacquelin E. & Ovigne P. A. 2005 Natural frequency evaluation of a cracked RC beam with or without composite strengthening for a damage assessment. Journal of Materials and Structures, 30(10), 865–873.
[6] Hsu M. H. 2006 Concrete beams strengthened with externally bonded glass fiber reinforced plastic plates.Tamkang Journal of Science and Engineering, 9(3), 223-232.
[7] Atlihan G., Callioglu H., Conkur E. S. & Topcu M. 2009 Free vibration analysis of the laminated composite beams by using DQM. Journal of Reinforced Plastics and Composite, 28(7), 1-12.
[8] Baghiee N, Esfahani M. R. & Moslem K. 2009 Studies on damage and FRP strengthening of reinforced concrete beams by vibration monitoring. Engineering Structures, 31(4), 875-893
[9] Kabir M. Z. & Shafei E. 2009 Analytical and numerical study of FRP retrofitted RC beams under low velocity impact. Scientia Iranica, 16(5), 415-428.
[10] Lau D., Pamb H. J. 2010 Experimental study of hybrid FRP reinforced concrete beams. Engineering Structures, 32(12), 3857–3865.
[11] Behera G. C., Rao T. D. G. & RAO C. B. K. 2014 Study of post-cracking torsional behaviour of high-strength reinforced concrete beams with a ferrocement wrap. Slovak Journal of Civil Engineering, 22(3), 1-12.
[12] Chen D. & Liu F. 2014 Free vibration of a single-edge cracked RC beam strengthened with FRP. Journal of Engineering Mechanics. 140(6), 04014035-1-9.
[13] Capozucca R. 2014 Vibration of CFRP cantilever beam with damage. Composite Structures, 116(1), 211-222.
[14] Yasmeen S. A., Abhijit A. & Rao D. S. 2014 Modal analysis of fibre reinforced composite beams with a transverse crack using ansys. International Journal of Modern Engineering Research (IJMER), 4(8), 8-14.
[15] Fan Y. & Wang H. 2015 Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments. Composite Structures, 124(1), 35-43.
[16] Nguyen-Minh L. & Rovnak M. 2015 Size effect in uncracked and pre-cracked reinforced concrete beams shear-strengthened with composite jackets. Composites Part B, 78(1) 361-376.
[17] Jadhav V. D., Bhoomkar M. M. 2016 Experimental and numerical fem analysis of cracked composite cantilever beam by vibration techniques. International Journal of Engineering Science and Computing, 6(4), 3347-4451.
[18] Yang R., He X. & Dai L. 2016 Damage behaviour of concrete beams reinforced with GFRP bars. Composite Structures, 161(1), 173-186.
[19] Khalate A. B. & Bhagwat V. B. 2016 Detection of cracks present in composite cantilever beam by vibration analysis technique. International Journal of Innovative Science, Engineering & Technology. 3(1), 400-4004.
[20] Mustafa S. A. A. & Hilal H. 2017 Behavior of concrete beams reinforced with hybrid steel and FRP composites. Housing and Building National Research CenterJournal, in press, x(x), xxx-xxx.
[21] Baghi H., Barros J. A. O. & Rezazadeh M. Shear strengthening of damaged reinforced concrete beams with hybrid composite plates. Composite Structures, 178(1), 353-371.
[22] Razzaghi J., Abadi M. Kh. & Alijani A. 2018 A new approach for modeling of crack in reinforced concrete beams using finite element method. Concrete Research. in press, (in Persian)
[23] Alijani A., Mastan Abadi M., Darvizeh A. & Abadi, M. Kh. 2018 Theoretical approaches for bending analysis of founded Euler–Bernoulli cracked beams. Archive of Applied Mechanics, 88(6), 875-895.
[24] Irwin G. R. & Kies J. A. 1954 Critical energy rate analysis of fracture strength. Journal of Welding, 33(1), 193-198.
[25] Irwin G. R.1957 Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24(1), 361-364.
[26] Kienzler R. & Herrmann G. 1986 An elementary theory of defective beams. Journal of Acta Mechanica, 62(1), 37-46.
[27] Kienzler R.& Herrmann G. 1986 On material forces in elementary beam theory. Journal of Applied Mechanics, 53(1), 561-564.
[28] Yokoyama T. & Chen M. C. 1998 Vibration analysis of edge-cracked beams using a linespring model. Journal of Engineering Fracture Mechanics, 59(3), 403-409.
[29] Logan D. L. 2007 A First Course in the Finite Element Method. 4rd edn. Canada: Thomson