ارزیابی خرابی پیش‌رونده در سازه‌های بتن مسلح با سیستم دال حبابی

نویسندگان
1 دانشگاه خلیج فارس
2 دانشگاه خلیج فارس بوشهر
چکیده
خرابی پیش‌رونده معمولاً به گسترش یک آسیب موضعی اولیه در درون سازه که مانند یک واکنش شیمیایی زنجیره‌ای منجر به فروپاشی جزئی و یا کلی سازه می‌شود، گفته می­شود. به‌منظور جلوگیری یا کاهش خرابی پیش‌رونده، راهبردهای متنوعی برای طراحی در برابر گسیختگی پیش‌رونده در اسناد دولتی آمریکا مانند UFC و GSAارائه ‌شده است. در این پژوهش با استفاده از تحلیل غیرخطی پوش عمودی روی ساختمان‌های بتنی با سیستم دال حبابی، به بررسی عملکرد سازه پس از حذف ستون در موقعیت‌های متفاوت و تأثیر آن در پتانسیل ایجاد خرابی‌های پیش‌رونده پرداخته‌شده است. نتایج به ‌دست‌آمده نشان می‌دهد که با افزایش تعداد طبقه عملکرد سازه‌های دارای دال حبابدار در برابر خرابی پیش‌رونده ضعیف‌تر شده و بهترین عملکرد را سازه‌های میان مرتبه از خود نشان می‌دهند. همچنین با افزایش نسبت طول دهانه به ارتفاع طبقه، مقاومت ساختمان­ها در برابر خرابی پیش‌رونده کاهش می­یابد. بیشترین خرابی بوجود آمده در دال حبابی برابر 25 درصد مساحت کف و در سناریوی حذف ستون میانی است که در محدوده مجاز بوده و منجر به خرابی پیش رونده نشده است. همچنین نتایج نشان می­دهد در دهانه­های بزرگ دال حبابی عملکرد خوبی داشته در برابر خرابی پیش رونده داشته و مسیر جایگزین لازم را برای اضافه بار ایجاد شده فراهم می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Progressive collapse evaluation of RC structures with Bubble Deck floor system

چکیده English

Usually, progressive collapse is defined as the progress of a primary local damage within the structures that, like a chain chemical reaction, causes to partial or total collapse of the structures. Although, many researches on progressive collapse under blast load have been made, it can be seen that rupture aroused in structures during strong earthquake events will not happen suddenly, but because of failure in structural design or performance, the weak elements will destroy easier. Subsequently, energy redistribution will occur that may disconnect the adjacent members. Further, the progressive collapse phenomenon will take place and subsequently cause to collapse all the structures. In the recent years, the incidence of catastrophic events such as September 11 has attracted a lot of attention to the issue of the progressive collapse and lead to be considered in the design of new structures. In order to prevent damages by reducing the progressive collapse, different strategies for designing against the progressive collapse have been presented in the government documents of USA, such as UFC and GSA. Although, many researches have been made on the progressive collapse in recent years, but the structures deck effect on the progressive collapse has not been considered sufficiently.

Nowadays, due to the increase of the speed of construction and lightweight construction, the usage of new systems has been increased. Among these systems, Bubble Deck system is notable. This structural system functions as a two-way slab and a lightweight structural member. In Bubble Deck system, the plastic spherical hollow core (PSHC) is used instead of the concrete situated in the central zone of the cross sections around the slab’s mid-span, where the shear stress is relatively small, compared to the supports. PSHC creates a hollow space in the slab. The Bubble Deck technology uses spheres, made of recycled industrial plastic, to create air voids, while providing the strength through the arch action.

The objective of this study is to evaluate the progressive collapse of reinforced concrete structures with Bubble Deck floor system. The behavior of structures, the amount, and the mode of the collapse distribution can be studied by various methods. SAP2000 software is used to model, design and analyze the structures. DoD2013 statement has been selected as the reference criteria, and based on that, all the uploading and collapse measurements has been determined. The equivalent nonlinear shell layered element is used to define the slab sections in numerical modeling. 48 structures with the same plans (3 spans on each direction) were modeled. Moment resisting system is chosen as lateral resisting systems. The models were in 4, 6 and 8 stories. Story height of all structures is 3.5 m, and also three types of span length to story height ratios including 1.5, 2.5 and 3.5 are investigated.

The results show by increasing the number of floors, the structure’s performance against progressive collapse will decrease and the middle-rise structures (6 stories) have shown the best performance rather than others. Also, by increasing the ratio of span length to floor height, progressive collapse resistance is reduced. The most observed damage in the Bubble Deck floors is less than 25 percent of floor area which affected by progressive collapse in the middle-column removal scenario. This value of damage satisfy DoD2013 targets.

کلیدواژه‌ها English

progressive collapse
Bubble Deck
nonlinear static analysis
Alternative Path Method
References
[1]. Menchel K. 2008 Progressive collapse: comparison of main standards, formulation and validation of new computational procedures, Doctoral dissertation, Ph.D. Thesis, Universite Libre de Bruxellea.
[2]. Khandelwal K. Multi-scale computational simulation of progressive collapse of steel frames, A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, University of Michigan, 2008.
[3]. ASCE. Seismic Rehabilitation of Existing Buildings (ASCE/SEI 41-06). Reston, Virginia: American Society of Civil Engineers , 2007.
[4]. General Services Administration (GSA), Progressive collapse analysis and design guideline for new federal office buildings and major modernization, washangton(DC), 2003.
[5]. United States Department of Defence (DoD), Design of building to resist progressive collapse٬ unified facilities criteria (UFC), 4-023-03, washangton (DC), 2013.
[6]. Teja P.P., Kumar P.V., Anusha S. and Mounica CH. 2012 Structural behavior of bubble deck slab. Advances in Engineering, Science and Management (ICAESM), International Conference., Nagapattinam, Tamil Nadu, 383-388.
[7]. Kokot S., Anthoine A., Negro P., Solomos G. 2012 Static and dynamic analysis of a reinforced concrete flat slab frame building for progressive collapse. Engineering Structures, 40, 205-217.
[8]. Kai Q., Li B., 2012 Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column experimental results. Engineering Structures, 42, 154-167.
[9]. Qian K., Li B., 2013: Experimental study of drop-panel effects on response of reinforced concrete flat slabs after loss of corner column. ACI Structural Journal., 110 (2), 319-329.
[10]. Yi WJ., Zhang FZ., Kunnath SK. 2014: Progressive collapse performance of RC flat plate frame structures. Journal of Structural Engineering., DOI:10.1061/(ASCE)ST.1943-541X.0000963.
[11]. Li M., Sasani M., 2015: Integrity and progressive collapse resistance of RC structures with ordinary and special moment frames. Engineering Structures., 95, 71-79.
[12]. Hashemi S.Sh., Sadeghi K., Vaghefi M., Siadat A., 2017: Evaluation of ductility of RC structures constructed with Bubble Deck system. International Journal of Civil Engineering, DOI: 10.1007/s40999-017-0158-y.
[13]. Sixth National Building Regulations., Load on the building. 2013: Department of Housing and Urban Development. "In persian".
[14]. Chapter 9 of the National Building Regulations., Design and implementation of reinforced buildings.2013: Department of Housing and Urban Development. "In persian".
[15]. Computers and Structures Inc., 2010: CSI Analysis Reference Manual, SAP2000 advanced 14.2.0, Berkeley, California, USA.
[16]. Ibrahim A.M., Ali N.K., Salman, W.D., 2013: Flexural capacities of reinforced concrete two-way bubbledeck slabs of plastic spherical voids. Diyala Journal of Engineering sciences, 6(02), 12-20 .
[17]. Hashemi S.Sh., Fiouz A., Khosravi R., Siadat A., 2015: Nonlinear analysis of reinforsed concret bubble roof system equivalent layer method. The 2nd national congress on engineering construction and evaluation of civil engineering project, Semnan "In Persian".