تحلیل کمانشی ستون‌های‌ ساخته شده از مواد مدرج تابعی با مقطع متغیر

نویسندگان
1 دانشکده مهندسی عمران- دانشگاه صنعتی خواجه نصیرالدین طوسی
2 گروه مهندسی عمران- دانشگاه کاشان
چکیده
در تحقیق پیش‌رو، یک تکنیک عددی جدید جهت تحلیل پایداری ستون غیرمنشوری از جنس مواد مدرج تابعی ارائه گردیده است. خواص مواد در راستای ضخامت تیر ثابت در نظر گرفته شده است، درحالی که در راستای طولی به صورت پیوسته و تدریجی و طبق قانون توانی تغییر می‌کند. همچنین به علت تفاوت ناچیز ضریب پواسون مصالح سازنده تیر، مقدار آن در طول عضو ثابت در نظر گرفته شده است. در مرحله نخست به منظور بررسی رفتار پایداری و ارتعاش آزاد این اعضا، معادله حرکت حاکم بر ارتعاش آزاد تیرهای غیرمنشوری با مقطع متغیر نمایی با استفاده از ترکیب بسط مک‌ لورن و روش سری‌های توانی حل می‌گردد. درنتیجه، فرم تقریبی تغییر شکل ارتعاشی تیر به صورت یک چند جمله‌ای متناهی به‌دست می‌آید و با جایگذاری شرایط مرزی حاکم بر تیر و با استفاده از روش حل مقادیر ویژه مقدار فرکانس طبیعی ارتعاشی محاسبه می‌گردد. در ادامه به کمک اصل حداقل انرژی پتانسیل و با توجه به تشابه فرم تغییر شکل اعضای الاستیک تحت تحلیل پایداری و ارتعاش آزاد، مقدار بار کمانش بحرانی تعیین می‌گردد. در پایان جهت اعتبار سنجی، نتایج عددی حاصل از تحلیل پایداری و ارتعاش آزاد برای اعضای ساخته شده از مواد همگن و یا تابعی ارائه شده و تاثیر تغییرات سطح مقطع، توان ماده تابعی و نوع تکیه‌گاه بر بار کمانش بحرانی و فرکانس طبیعی ارتعاش مورد بررسی قرار گرفته است. در تمامی مسائل، کارآمدی، دقت و صحت روش عددی ارائه شده به اثبات رسیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Buckling analysis of axially functionally graded beams with variable cross-section

نویسنده English

Masoumeh Soltani 2
چکیده English

Owing to efficiency, rising stability of structures, reduction in structural weight and cost, and the improvements in fabrication process, non-uniform beams are extensively adopted in civil and mechanical structures. Furthermore, the use of functionally graded (FG) materials has been increasing in many mechanical components due to their conspicuous characteristics such as high strength, thermal resistance and optimal distribution of weight. In the present paper, a numerical model combining the power series expansions and the Rayleigh-Ritz method is adopted for stability and free vibration analyses of axially functionally graded (FG) columns with variable cross-section. The main purpose of this paper is calculating the critical buckling loads and natural frequencies concurrently for AFG members with exponentially-varying geometrical properties. For this, a mixed power series expansions and the principle of stationary total potential energy as a first endeavor is presented. In this study, the material properties of the non-prismatic beam including Young’s modulus of elasticity and density of material are assumed to be graded smoothly along the beam axis by a power-law distribution of volume fractions of metal and ceramic. Moreover, the cross-sectional area and moment of inertia vary exponentially over the member’s length. In this regard, the power series approximation is applied to solve the fourth order differential equation of motion, since in the presence of variable cross-section and axially non-homogeneous material, stiffness quantities are not constant. All geometrical and material properties and displacement component are developed based on power series of an identified degree. The natural frequencies of the AFG beam with variable cross-section are derived by imposing the boundary conditions and solving the eigenvalue problem. The explicit expression of vibrational shape function is then derived based on this rigorous numerical method. The vibrational mode shapes of an elastic member are similar to the buckling ones. Therefore, the obtained deflected shapes of the considered non-prismatic beams can be used as deformation shape of member for the linear buckling analysis. The critical buckling load of non-prismatic beam can be then estimated by adopting the principle of stationary total potential energy. According to the steps mentioned above, for measuring the accuracy and competency of the proposed numerical procedure, two numerical examples including axially non-homogeneous and homogeneous column with non-uniform section are represented. Numerical results of the critical buckling loads and natural frequencies for various boundary conditions, different gradient index and cross-section variation are represented. Due to lack of similar research for the stability and free vibration analyses of elastic AFG beams with exponential variation of the cross-sectional area and moment of inertia, outcomes of homogeneous members are compared with the results presented in other available numerical and analytical references and those related to non-prismatic beams with material variation are then reported. The accuracy of the method is then remarked. This method has many positive points consisting of efficiency, accuracy and simplicity contrasted with more complex numerical methods. It has to be noticed that the present numerical method can be applied to determine the critical buckling loads and natural frequencies of axially functionally graded (FG) prismatic beams as well as non-prismatic ones.

کلیدواژه‌ها English

Buckling analysis
Axially functionally graded material
Non-uniform members
Power series expansions
Principle of stationary total potential energy
[1] Timoshenko S.P. & Gere J.M. 1961 Theory of Elastic Stability. McGraw Hill, New York.
[2] Chen WF & Lui EM. 1987 Structural stability, theory and implementation. New York, Elsevier.
[3] Bazant ZP & Cedolin L. 1991 Stability of structures. Elastic, Inelastic, Fracture and Damage Theories. New York, Dover Publications.
[4] Frisch-Fay R. 1962 On the stability of a strut under uniformly distributed axial forces. International Journal of Solids and Structures, 2(3), 361–369.
[5] Arbabi F. & Li F. 1991 Buckling of variable cross-section columns: integral equation approach. Journal of Structural Engineering, 117 (8), 2426–2441.
[6] Siginer A. 1992 Buckling of columns of variable flexural rigidity. Journal of Engineering Mechanics, 118 (3): 543–640.
[7] Raftoyiannis I. & Ermopoulos J. 2005 Stability of tapered and stepped steel columns with initial imperfections. Engineering Structures, 27, 1248–1257.
[8] Saffari H., Rahgozar R. & Jahanshahi R. 2008 An efficient method for computation of effective length factor of columns in a steel gabled frame with tapered members. Journal of Constructional Steel Research, 64, 400–406.
[9] Rahai, A. R. & Kazemi S. 2008 Buckling analysis of non-prismatic column based on modified vibration method. Communications in Nonlinear Science and Numerical Simulation, 13, 1721–1735.
[10] Coşkun S. B. & Atay M. T. 2009 Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method. Computers and Mathematic with Applications, 58(11–12), 2260–2266.
[11] Okay F., Atay M. T. & Coçkun S. B. 2010 Determination of buckling loads and mode shapes of a heavy vertical column under its own weight using the variational iteration method. International Journal of Nonlinear Sciences and Numerical Simulation, 11(10), 851–857.
[12] Eisenberger M. & Clastornik J. 1987 Beams on variable two-parameter elastic foundation. Journal of Engineering Mechanics, 113(10), 1454-1466.
[13] Kim N-II, Fu C. C. & Kim M-Y. 2007 Stiffness matrices for flexural–torsional/lateral buckling and vibration analysis of thin-walled beam. Journal of Sound and Vibration, 299, 739–756.
[14] Al-Sadder S. Z. 2004 Exact expression for stability functions of a general non-prismatic beam-column member. Journal of Constructional Steel Research, 60, 1561–1584.
[15] Asgarian B., Soltani M. & Mohri F. 2013 Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections. Thin-Walled Structures, 62, 96–108.
[16] Soltani M., Asgarian B. & Mohri F. 2014 Finite element method for stability and free vibration analyses of non-prismatic thin-walled beams. Thin-Walled Structures, 82, 245-261.
[17] Tong X. & Tabarrok B. 1995 Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section. Journal of Sound and Vibration, 186, 821–35.
[18] Elishakoff I. & Guede Z. 2004 Analytical polynomial solutions for vibrating axially graded beams. Mechanics of Advanced Materials and Structures, 11(6), 517-533.

[19] Alshorbagy A.E., Eltaher M.A. & Mahmoud F.F. 2011 Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1), 412-425.
[20] Rajasekaran S. 2013 Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Applied Mathematical Modelling, 37, 4440-4463.
[21] Singh K.V. & Li G. 2009 Buckling of functionally graded and elastically restrained non-uniform columns. Composites Part B, 40(5), 393-403.
[22] Shahba A. & Rajasekaran S. 2012 Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials. Applied Mathematical Modelling, 36(7), 3094-3111.
[23] Shahba A., Attarnejad R. & Hajilar S. 2013 A mechanical-based solution for axially functionally graded tapered Euler-Bernoulli beams. Mechanics of Advanced Materials and Structures, 20, 696-707.
[24] Nakamura T., Wang T. & Sampath S. 2000 Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater, 48, 4293–306.
[25] Zakeri M., Modarakar Haghighi A. & Attarnejad R. 2016 On the Analysis of FGM Beams: FEM with Innovative Element. Journal of Solid Mechanics, 8(2), 348-364.
[26] Wang C. M., Wang C.Y. & Reddy J.N. 2005 Exact Solutions for Buckling of Structural Members. CRC Press LLC, Florida.
[27] MATLAB Version7.6.MathWorks Inc, USA, 2008.
[28] ANSYS, Version 5.4, Swanson Analysis System, Inc, 2007.